Silicon MEMS Timing Solutions ### **COMMUNICATIONS & ENTERPRISE** 4x better frequency slope ($\Delta F/\Delta T$) 10x higher reliability and environmental resilience Clock-System-on-a-Chip—smaller, simpler design ### **MOBILE & IOT** 35% smaller footprint Maintains stability under 10°C/s temperature ramp 30x better quality and reliability **AUTOMOTIVE** Best stability over -55 to +125°C 50x to 500x better quality, 50x better reliability 20x better shock and g-sensitivity performance **INDUSTRIAL** Programmable, qualify once—multiple parts 30x better quality and reliability 20x better shock survivability, 4x better vibration #### **AEROSPACE & DEFENSE** 20x better shock survivability, 4x better vibration 50x better g-sensitivity Wide operating temperature range -55 to +125°C ### **CONSUMER** Immediate availability Virtually unlimited capacity Programmable 1 Hz to 725 MHz ### MEMS Timing Solutions Portfolio Automotive Aerospace & Defense Mobile & IoT Industrial & Consumer Communications & Enterprise Network **uPower** TCXO/ uPower Low Spread TCXO/ **High Temp** High Temp Low litter Synch / **High Temp** 32 kHZ VCTCXO/ ocxo VCTCXO/ **Power** Spectrum **TCXO** Oscillators **Oscillators Oscillators** litter **Oscillators TCXO** Oscillators **DCTCXO DCTCXO** Oscillators 1.2 mm² Cleaner 1.2 mm² SiT9025* SiT5348/9* SiT9501* SiT1576* SiT5358/9* SiT5711* SiT95145 SiT1602 SiT1618 SiT8924/5* SiT8944/5* 1-150 MHz 1-220 MHz SiT1552 1-220 MHz 4 inputs ±5 ppm 25-644.5313MHz 1-60 MHz 7.3728-48 MHz 1-137 MHz 1-137 MHz 3.75-77.76 MHz -55 to +125°C ±0.05-0.1 ppm ±5, 10, 20 ppm 1 Hz-2.5 MHz 70 fs Jitter** ±0.05-0.1 ppm ±5, ±8 ppb 10 outputs -40 to +125°C -55 to +125°C 3.1-4.9 mA 30 dB -40 to +105°C -55 to +125°C 2.5 ns Jitter* -40 to +105°C -40 to +85°C **FlexSwing** 1 clk domain Reduction 0.004 ppb/g SiT5346/7* SiT2024/5³ SiT5356/7* SiT95147 SiT2044/5* SiT1566/8 SiT8008/9* SiT8918/9* SiT9365 1-220 MHz 1-137 MHz 4 inputs **uPower** 1-220 MHz 1-137 MHz 25-325 MHz ±3, 5 ppm 2.5 ns Jitter** 1-137 MHz 1-137 MHz Low Jitter ±0.1-0.25 ppm -55 to +125°C 8 outputs -55 to +125°C ±0.1-0.25 ppm **Oscillators DCOCXO** 3.1-5.9 mA -40 to +125°C 0.21 ps Jitter* -40 to +105°C **Oscillators** SOT23-5 4 clk domains SOT23-5 -40 to +105°C 1.2 mm² 0.004 ppb/g SiT5146/7* SiT5155/6/79 SiT95148 SiT9346/7* SiT9366/7* SiT1580* SiT2001/2* SiT8920/1* SiT5721* 1-220 MHz 4 inputs TCXO/ 1-220 MHz SiT1569* SiT9386/79 1-725 MHz +0.5-2.5 ppm 1-137 MHz 1-137 MHz ±5 ppm 1-60 MHz 1-725 MHz 11 outputs ±0.5-2.5 ppm 1-725 MHz VCTCXO/ 2.5 ns litter* Hz-462.5 kH 0.21 ps Jitter SOT23-5 -55 to +125°C ±5, ±8 ppb 40 to +105°C -40 to +105°C -40 to +105°C 4 clk domains 0.004 ppb/g -40 to +105°C **DCTCXO** ±50 ppm -40 to +85°C Program via I²(SiT2018/9* SiT9375 SiT5021/2* SiT5186/7 Spread μPower 1-137 MHz Spread SiT1579* 25-644.5313MHz **DCXO** 1-625 MHz Clock 1-220 MHz 40 to +125°C 200 fs Jitter* 32 kHz Spectrum **DCXO** Spectrum 1 Hz-2.5 MHz ±5 ppm In-System SOT23-5 ±0.5-2.5 ppm FlexSwing Generator Programmable Oscillators ±50 ppm Oscillators Oscillators In-System -40 to +105°C Programmable SiT2020/19 SiT9120 SiT3541/2* SiT1581* SiT5386/7⁹ SiT95141 1-137 MHz SiT9005* SiT9045* 25-212.5 MHz SiT1532/3 1 Hz-2.5 MHz 1-220 MHz 4 inputs I²C/SPI -55 to +125°C **VCXO** 1-141 MHz 0.6 ps Jitter* 1-150 MHz SiT3907* 10 outputs 1508 & 2012 ±0.1-0.25 ppm ±30, 50 ppm SOT23-5 1-725 MHz 30dB Reduction 30 dB Reduction 2.5 ns Jitter* -40 to +105°C 1-220 MHz 1 clk domain 0.21 ps Jitter* SiT9121/2* SiT1572 SiT95143 SiT1534 SiT9003* uPower 1-625 MHz SiT3807/8/99 SiT3521/2* 4 inputs ±50 ppm 1 Hz-32 kHz 1-110 MHz 0.6 ps Jitter* Oscillators 11 outputs 1-220 MHz I2C/SPI **VCXO** 2012 Option Low Power 2.5 ns Jitter* 1-725 MHz 4 clk domains 0.21 ps Jitter* SiT1630 SiT8208/9³ SiT3372/3* SiT1573 SiT8021* SiT3342/3* 16.384 kHz & 1-220 MHz SiT9002* 1-725 MHz 1-26 MHz ±100 ppm 32.768 kHz 0.5 ps Jitter* 1-725 MHz 1-220 MHz ±10-50 ppm 1508 60-280 μΑ -40 to +105°C ±10 to 50 ppm 0.21 ps Jitter* 2012, SOT23 0.21 ps Jitter* ^{*}Any frequency, programmable within range out to 6 decimals ^{**}Integrated RMS phase jitter; See datasheet for integration range [©] September 2020 SiTime Corporation. Subject to change without notice. NanoDrive[™] programmable ultra-low-power output LVPECL, LVDS, HCSL output LVPECL, CML, HCSL, LVDS or LVCMOS output LVCMOS output Pin compatible with guartz devices Available as field programmable with Time Machine II ## SiTime's Analog Expertise Enables Unique Features Many terminals/outputs company, SiTime has combined man-decades of MEMS expertise with analog CMOS circuit design, resulting in flexible products with the most features and highest performance. # MEMS Oscillator Product Selector | SiTime Base
Part No. | Output
Freq. | Frequency Stability
(ppm) | Supply Volt.
(V) | Supply Current
(Typical) | Package | Output Logic | Target Applications | Features | |--|--------------------|--|--|--------------------------------------|--|---|---|----------------------------| | μPower 32 kHz Oscillators & TCXOs Replace XTAL, XO, TCXO Smallest size Drive two or more loads Best accuracy (stability) Best reliability | | | | | | | | | | SiT1532/33 | 22762111 | 75, 100, 250 over temp
(10, 20 room temp) | 1.2 to 3.63 | 0.90 μΑ | 1508, 2012 | NanoDrive, LVCMOS | Smart meters | Smallest XO | | SiT1572 | | ±50 | 1.62 to 3.63 | 4.5 μΑ | 1508 | LVCMOS | Health & wellness monitors RTC reference clock | Smallest XO | | SiT1630 | | 75, 100, 150 over temp
(20 room temp) | 1.5 to 3.63 | 1.0 μΑ | 2012, SOT23-5 | LVCMOS | Industrial timekeeping & battery management Multi-drop 32 kHz clock distribution Bluetooth & WiFi modules Internet of Things (IoT), cellular connectivity Smart utility water, gas & electricity meters (AMR) Connectivity modules | -40 to +105°C | | SiT1552
TCXO | 32.768 kHz | $\pm 10, \pm 13, \pm 22$, all-inclusive | 1.5 to 3.63 | 0.99 μΑ | 1508 | NanoDrive, LVCMOS | | Smallest TCXO | | SiT1566
Super-TCXO | | ±3, ±5, all-inclusive | 1.62 to 3.63 | 4.5 μA | | LVCMOS | | Smallest XO, | | SiT1568
Super-TCXO | | ±5 all-inclusive
(after overmold/underfill) | 1.8 | 4.5 μΑ | | | • Connectivity modules | 2.5 ns rms
phase jitter | | μPower Oscillators & TCXOs Smallest size Lowest power Lightest weight Drive two or more loads Best accuracy (stability) Best reliability | | | | | | | | | | SiT1534 | 1 Hz to 32.768 kHz | 75, 100, 250 over temp
(20 room temp) | 1.2 to 3.63 | 0.90 μΑ | 1508, 2012 | NanoDrive, LVCMOS | | Smallest XO | | SiT1569 | 1 Hz to 462.5 kHz | ±50 | 1.62 to 3.63 | 2.0 μA (100 kHz) | 1508 LVCMOS | Health & wellness monitorsIndustrial data loggers & sensor interface | Smallest XO | | | SiT1576
Super-TCXO | 1 Hz to 2.5 MHz | ±5 all inclusive | 1.62 to 3.63 | 8.0 μA (100 kHz) | | Wenes | loT beacons Smart pens | Smallest XO, | | SiT1579 | 1 Hz to 2.5 MHz | ±50 | 1.62 to 3.63 | 8.0 μA (100 kHz) | | | 2.5 ns rms
phase jitter | | | SiT8021 | 1 MHz to 26 MHz | ±100 | 1.8, 2.5V to 3.3V | 60 to 280 μA
(0.7 μA stby) | | | Wearables & IoTPortable audioIndustrial & medical sensors | Smallest XO | | Low-Power O | scillators Best | reliability Pin-compati | ble QFN or SOT- | -23 package for be | est solder-joint reliability | | | | | SiT1602 | 52 standard freq. | | | 3.1 to 5.5 mA
(0.6 - 1.0 μA stby) | 2016, 2520, 3225,
5032, 7050 LVCMOS
SOT23-5 LVCMOS | LVCMOS | Consumer, industrial and audio video equipment Networking, storage & servers Industrial sensors, PLC & motor server | | | SiT8008/09 | 1 MHz to 137 MHz | ±20, ±25, ±50 | 1.8, 2.5 to 3.3 | | | | | FP* | | SiT2001/02 | 1 MHz to 137 MHz | | | 3.6 to 5.4 mA
(1.0 µA stby) | | Microprocessor & FPGA clocking | | | | Low-Jitter Oscillators 0.1 ppb/g (g-sensitivity, vibration immunity) Best reliability | | | | | | | | | | SiT9365** | 32 standard freq. | ±10, ±20, ±25, ±50 | 2.5 to 3.3 | 76 to 84 mA | 3225, 5032, 7050 | LVPECL, LVDS, HCSL | Computing Networking, storage, servers, & telecom Optical modules Industrial control Instrumentation FPGA clocking | 0.21 ps rms | | SiT9366/67** | 1 MHz to 725 MHz | | | | | | | phase jitter | | SiT9120 | 31 standard freq. | | 2.5 to 3.3 | 54 to 69 mA | 3225, 5032, 7050 | LVPECL, LVDS | | 0.5/0.6 ps rms | | SiT9121/22 | 1 MHz to 625 MHz | | | | | | | phase jitter, | | SiT8208/09 | 1 MHz to 220 MHz | | 1.8, 2.5 to 3.3 29 to 36 mA (10 µA stby) | | 2520, 3225, 5032, 7050 | LVCMOS | | FP* | | SiTime Base
Part No. | Output
Freq. | Frequency Stability
(ppm) | Supply Volt.
(V) | Supply Current
(Typical) | Package | Output Logic | Target Applications | Features | |---|-------------------------------------|-------------------------------|---------------------------|---------------------------------------|--|--|--|---| | High-Temper | ature and Autom | otive Oscillators 0 |).1 ppb/g (g-sen | sitivity, vibration ir | nmunity) Best reliabili | ty Pin-compatible QF | N or SOT-23 package for best solder-joint reliability | | | SiT1618
SiT8918/19 | 33 standard freq. | ±20, ±25, ±30, ±50 | 1.8, 2.5 to 3.3 | 3.6 to 5.4 mA
(1.0 μA stby) | 2016, 2520, 3225,
5032, 7050 | LVCMOS | High-temp industrial equipment such as industrial control systems & industrial sensors Servo motor, PLC & high-temp networking gears Outdoor systems (medical & health monitoring) Asset tracking systems | FP*, | | SiT2018/19 | 1 MHz to 137 MHz | | | | SOT23-5 | | | -40 to +125°C | | SiT8920/21 | 1 MHz to 137 MHz | | | | 2016, 2520, 3225,
5032, 7050 | LVCMOS | Ruggedized applications in harsh environments Applications in extreme temperature conditions | | | SiT2020/21 | | | | | SOT23-5 | | Avionics equipment | FP*, | | SiT8924/25 | 1 MHz to 137 MHz | | | | 2016, 2520, 3225,
5032, 7050 | | AEC-Q100 automotive applications ADAS, camera modules, Radar & Lidar Automotive Ethernet Infotainment LED headlights | -55 to +125°C | | SiT2024/25 | 1 MHz to 137 MHz | | | | SOT23-5 | LVCMOS | | | | SiT9025 | 1 MHz to 150 MHz | ±25, ±50 | | 0.6 to 7.9 mA
(0.7 to 2.6 μA stby) | 2016, 2520, 3225 | | | EMI reduction,
-55 to +125°C | | SiT9386/87** | 1 MHz to 725 MHz | ±20, ±25, ±50 | 2.5, 2.8, 3.0, 3.3 | 70 to 82 mA | 3225, 7050 | LVPECL, LVDS, HCSL | ECUs (engine & transmission control units) | -40 to +105°C | | VCXO (Voltage Controlled Oscillators) ±25 to ±3200 ppm pull range, <1% linearity 0.1 ppb/g (g-sensitivity, vibration immunity) Best reliability | | | | | | | | | | SiT3372/73** | 10 MHz to 700 MHz | ±15, ±25, ±30, ±50 | 2.5 to 3.3 | 76 to 84 mA | 3225, 5032, 7050 | LVPECL, LVDS, HCSL | Audio/video | 0.21 ps rms
phase jitter | | SiT3807
SiT3808/09 | 31 standard freq. 1 MHz to 220 MHz | ±10, ±25, ±50 | | 29 to 34 mA
(10 to 70 μA stby) | 2520, 3225, 5032, 7050 LVCMOS | Wireless & telecom equipment Instrumentation | 0.5 ps rms
phase jitter,
FP* | | | TCXO/VCTCX | 0/DCTCX0 ±6.2 | 5 to ±3200 ppm pull ra | ange 5 ppt res | olution frequency | control 0.1 ppb/a (a- | sensitivity, vibration im | munity) Best reliability | | | SiT5358/59 | | ±0.05 | alige 5 ppries | 40 to 45 mA | 5032 | LVCMOS,
Clipped
Sinewave | High-reliability telecom & networking Broadband satellite, Industrial, test & instrumentation | I2C, 1 ppb/°C slope, | | SiT5356/57
Super-TCXO** | 1 MHz to 220 MHz | ±0.03
±0.1, ±0.2, ±0.25 | 2.5, 2.8, 3.0, 3.3 | | | | | 0 to +70°C | | SiT5155
Super-TCXO**
SiT5156/57
Super-TCXO** | 13 standard freq. 1 MHz to 220 MHz | ±0.5, ±1, ±2.5 | | | | | High-reliability networking, server, storage, & telecom Industrial/automotive/telecom GNSS | 12C programmable,
1 ppb/°C slope,
-40 to +105°C | | SiT5021/22 | 1 MHz to 625 MHz | ±5 | 2.5, 3.3,
2.25 to 3.63 | 55 to 69 mA | 3225, 5032, 7050 | LVPECL, LVDS | Instrumentation & networkingEmbedded systems | 0.6 ps rms
phase jitter | | DCXO (In-Sys | tem Programmab | ole) Digital pull for lo | west noise Up | o to ±3200 ppm p | ull range, 5 ppt pull resc | lution, <1% linearity | | | | SiT3521/22** | 1 MHz to 725 MHz | ±20, ±25, ±50 | 2.5 to 3.3 | 70 to 82 mA | 5032 | LVPECL, LVDS, HCSL | Communication & broadcastingTest & measurement equipment | I2C programmable,
0.21 ps rms phase jitter | | SiT3907 | 1 MHz to 220 MHz | ±10, ±25, ±50 | 1.8, 2.5, 2.8, 3.3 | 32 mA | 3225, 5032, 7050 | LVCMOS | Instrumentation & audio/videoPhase locked loops (PLL) & FPGA data recovery | 0.5 ps rms
phase jitter, FP* | | SSXO (Spread | d Spectrum Oscil | lators) ±0.125 to ±2 | 2.0% center spre | ead, -0.25% to -4.09 | % down spread, Lowest | cycle-cycle jitter | | | | SiT9005 | 1 MHz to 141 MHz | ±20, ±25, ±50 | 1.8, 2.5 to 3.3 | 4.0 to 5.6 mA | 2016, 2520, 3225
(SiT9003 for 5032, 7050) | LVCMOS | Printers & flat panels IP cameras | Smallest SSXO,
FP* | | SiT9002 | 1 MHz to 220 MHz | ±25, ±50 | 1.8, 2.5, 3.3 | 48 to 75 mA | 5032, 7050 | LVPECL, CML, LVDS, HCSL | PCI ExpressMicroprocessors | FP* | All families have programmable frequency within the output frequency range with occe *Field programmable with Time Machine II Programmer **Elite Platform products with DualMEMS™ technology for best dynamic performance # Application Examples and Benefits | Segment | Application | SiTime Benefits | SiTime Oscillator Family | | |-------------------------------|---|--|---|--| | | 4G/5G RRH, small cells, macro cells, microwave backhaul, other RF systems | Best dynamic stability 1ppb/°C, resistant to airflow and rapid thermal transients Most robust against shock/vibration, no activity dips | SiT5356/57/58/59, SiT5155/56/57 | | | Networking, | Carrier-grade routers & switches, SyncE, IEEE 1588 | Best dynamic stability 1ppb/°C, resistant to airflow and rapid thermal transients Best resilience (EMI susceptibility, PSRR), no activity dips | SiT5356/57/58/59, SiT9121/22, SiT9365/66/67 | | | Servers, Storage &
Telecom | Servers, storage, SATA, SAN, PCIe,
Fibre channel | ±10 to 25 ppm stability over industrial temperature
Best resilience (EMI susceptibility, PSRR) | SiT9120, SiT9365/66/67, SiT8008 | | | Telecolli | 100/200/400G ONT, SFP & optical modules | Smallest package (3.2 x 2.5 mm) for LVPECL/LVDS
Best dynamic stability, no activity dips | SiT9365/66/67, SiT5356/57/58/59 | | | | G.fast, DOCSIS 3.1, cable modems | High frequencies with 6 digits of accuracy
Best PSRR, shock/vibration resistance | SiT5356/57/58/59, SiT3521/22, SiT9365/66/67 | | | | ADAS and around view cameras | Smallest package (2.0 x 1.6 mm)
EMI reduction up to 17 dB | SiT8924/25, SiT9025 | | | | ADAS computer, connected car | Ultra-low jitter under harsh condition (0.215 ps) Best stability under high temperature (±20 ppm at 105°C) | SiT9386/87 | | | Automotive | Infotainment | Reliable startup at -40°C
EMI reduction up to 17 dB | SiT8924/25, SiT9025 | | | | LED headlights | Best stability under high temperature Best EMI control | SiT8924/25 | | | | Wireless charger | Programmability for short lead times, even for custom frequencies | SiT8924/25 | | | | Post-solder optical inspection | SOT23 leaded (not QFN) package ensures easy post-solder optical inspection | SiT2024/25 | | | | Precision GNSS | Best location accuracy under shock, vibration, rapid thermal transients, & EMI | SiT5155/56/57, SiT5356/57/58/59 | | | | Multi-function printers | Reduce EMI in system Customizable frequencies with 6 digits of accuracy | SiT9002/03/05, SiT8008 | | | Industrial | IP camera, security/CCTV system, VoIP camera | Smallest packages (2.0 x 1.6 mm, 2.5 x 2.0 mm) Best resilience (shock, vibration, EMS immunity) Customizable frequencies with 6 digits of accuracy | SiT8008, SiT1602 | | | | FPGA subsystem | Customizable frequencies with 6 digits of accuracy | SiT8008/09, SiT9121/22 | | | | Industrial computers, PLCs, motor control | Best stability under high temperature (+125°C)
30 times better reliability, best resilience | SiT2018/19/20, SiT8008 | | | | Activity tracker, smartwatch | 80% smaller than quartz Drive 2 to 3 loads with one chip | SiT1532, SiT1566/68/69, SiT1572 | | | Makila Wassakia | Activity tracker, smartwatch | 20 to 40% longer battery life
Most accurate time reference | SiT1552, SiT1569, SiT1572 | | | Mobile, Wearables,
& IoT | Activity tracker, smartwatch, IoT | Up to 3 times faster startup than quartz (0.5s vs. 1.5s for quartz) | SiT1532/52, SiT1569, SiT1579 | | | | Bluetooth headset | Best resilience (shock, vibration, EMS immunity) | SiT1532/52, SiT1566/68/69 | | | | Medical electronics | Most accurate 32 kHz for time-stamping 80% smaller than quartz | SiT1552, SiT1566/68/69 | | | Consumer | DSC, DVR, DSLR, IP camera, 100M to 10G
Ethernet | Smallest package (2.0 x 1.6 mm)
±20 ppm stability over industrial temperature | SiT8008, SiT1602 | | | Consumer | Wearables, health monitors, mobile phones, ultra-small notebook PCs | Drive 32 kHz to multiple loads with one chip | SiT1532/33, SiT1566/68/69, SiT1572/76/79 | | Reliability (Million Hours) ## **Silicon MEMS Timing Solutions** Field Programmable Oscillators and Time Machine II Programmer ## Instant Oscillators **Any Frequency** **Any Voltage** **Any Stability** Complete easy-to-use programming kit for SiTime's field programmable oscillators ### **Programmable Features** | Customizable Frequency | 1 to 625 MHz, 6 decimals of accuracy | |------------------------|--| | Frequency Stability | ±20 to ±50 PPM | | Supply Voltage | 1.8V, 2.5 to 3.3V | | Pull Range | ± 25 to ± 1600 ppm in VCXO and DCXO | | Drive Strength Control | 25 to 40 ns rise/fall time for low to high output drive | | Spread Spectrum | ± 0.125 to $\pm 2.0\%$ center spread and -0.25 to -4.0% down spread | ### **Additional Options** | Packages | QFN: 2016, 2520, 3225, 5032, 7050; SOT23-5: 2928 | |-------------------------|--| | Temperature Range | -20 to +70°C, -40 to +85°C, -40 to +105°C, -40 to +125°C, or -55 to +125°C | | Output Signaling | Differential: LVPECL, LVDS or HCSL, Single-ended: LVCMOS | © June-29 2018 SiTime Corporation, a MegaChips Company. Subject to change without notice. ### Don't waste time searching and waiting for oscillators - Reduce design time with always-in-stock field programmable oscillators - Optimize system performance with custom frequencies - Reduce EMI with programmable drive strength