

MCI0603TG Series Specification

Product Name

Series

Size

High Frequency Inductor

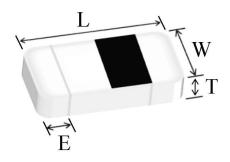
MCI 0603TG Series

EIAJ 0603

High Frequency Chip Ceramic Inductor (MCI-TG Series)

Engineering Specification

This product belongs to the 3C and industrial grade standard, not for automotive application. If customer privately uses to automotive parts and results in any consequences, INPAQ is not responsible for after-sales service, thank you!


■ FEATURES

- Particular ceramic material and coil structure provide high frequency application range up to 10GHz.
- Small size and low profile.
- > Available in various sizes.
- Excellent solderability and heat resistance.

APPLICATIONS

RF and wireless communication, information technology equipment which includes computer, telecommunications, radar detectors, automotive electronics, cellular phones, pagers, audio equipment, PDAs, keyless remote system and low-voltage power supply modules.

■ SHAPES AND DIMENSIONS

TYPE	060303	
ITPE	(EIA 0201)	
L	0.6±0.03	
W	0.3±0.03	
Т	0.3±0.03	
E	0.10~0.20	
Unit	mm	

■ PART NUMBER CODE

<u>MCI</u> <u>0603</u> <u>TG</u> <u>1N0</u> <u>□</u> <u>H</u> <u>B</u> <u>P</u> 1 2 3 4 5 6 7 8

- 1 Series Name
- 2 Dimensions L*W
- 3 TG: material code
- 4 Inductance(nH): N means Decimal point, ex: 1.0 nH = 1N0
- 5 Tolerance : $B = \pm 0.1 \text{nH}$, $C = \pm 0.2 \text{nH}$, $H = \pm 3\%$, $J = \pm 5\%$
- 6 Mark : H = 1/8 Mark , M = 1/4 Mark , N = No Mark
- 7 Soldering: Green Parts, B= Lead-Free for whole chip
- 8 Packaging: P = Paper tape, 7" reel

■ GENERAL TECHNICAL DATA

Operating temperature range: -55°C ~ +125°C

Storage Condition: Less than 40°C and 70% RH

Storage Time: 6 months Max. Soldering method: Reflow

■ TEST INSTRUMENTS CONDITIONS

Agilent E4991A/B RF Impedance Material Analyzer or equivalent with fixture 16197A or equivalent Agilent 4338B Milliohm meter

Test Level: 500 mV

MCI0603TG Series Engineer Specification

Version: A3

Page 2 of 16

■ All Specifications are subject to change without notice.

www.inpaq.com.tw; www.inpaqqp.com

■ PART NUMBER AND CHARACTERISTICS TABLE

Part No.	Inductance (nH)	Inductance Tolerance	Q (Min.)	Freq. (MHz)	DCR(Ω) Max.	S.R.F (MHz) Min.	Rated Current (mA) Max.
MCI0603TG0N3_HBP	0.3		11	500	0.07	18,000	850
MCI0603TG0N4_HBP	0.4		11	500	0.07	18,000	850
MCI0603TG0N5_HBP	0.5		11	500	0.08	18,000	850
MCI0603TG0N6_HBP	0.6		11	500	0.08	18,000	850
MCI0603TG0N7_HBP	0.7		12	500	0.09	18,000	750
MCI0603TG0N8_HBP	0.8		12	500	0.10	18,000	750
MCI0603TG0N9_HBP	0.9		12	500	0.12	18,000	700
MCI0603TG1N0_HBP	1.0		12	500	0.14	17,000	600
MCI0603TG1N1_HBP	1.1		12	500	0.14	17,000	600
MCI0603TG1N2_HBP	1.2		12	500	0.14	15,000	600
MCI0603TG1N3_HBP	1.3		12	500	0.15	15,000	600
MCI0603TG1N4_HBP	1.4		12	500	0.15	14,000	600
MCI0603TG1N5_HBP	1.5		12	500	0.15	13,500	600
MCI0603TG1N6_HBP	1.6		12	500	0.15	13,000	600
MCI0603TG1N7_HBP	1.7	B=±0.1nH	12	500	0.19	12,500	500
MCI0603TG1N8_HBP	1.8	Б=±0.1ПП С=±0.2nН	12	500	0.20	12,500	500
MCI0603TG1N9_HBP	1.9	0-10.21111	12	500	0.20	12,500	450
MCI0603TG2N0_HBP	2.0		12	500	0.20	12,500	450
MCI0603TG2N1_HBP	2.1		12	500	0.22	12,000	450
MCI0603TG2N2_HBP	2.2		12	500	0.22	12,000	450
MCI0603TG2N3_HBP	2.3		12	500	0.24	11,500	450
MCI0603TG2N4_HBP	2.4		12	500	0.25	11,000	450
MCI0603TG2N5_HBP	2.5		12	500	0.25	11,000	450
MCI0603TG2N6_HBP	2.6		12	500	0.25	11,000	450
MCI0603TG2N7_HBP	2.7		12	500	0.25	11,000	450
MCI0603TG2N8_HBP	2.8		12	500	0.25	9,500	450
MCI0603TG2N9_HBP	2.9		12	500	0.25	9,500	450
MCI0603TG3N0_HBP	3.0		12	500	0.25	9,500	450
MCI0603TG3N1_HBP	3.1		12	500	0.30	9,500	450
MCI0603TG3N2_HBP	3.2		12	500	0.30	9,500	450
MCI0603TG3N3_HBP	3.3		12	500	0.30	9,500	400

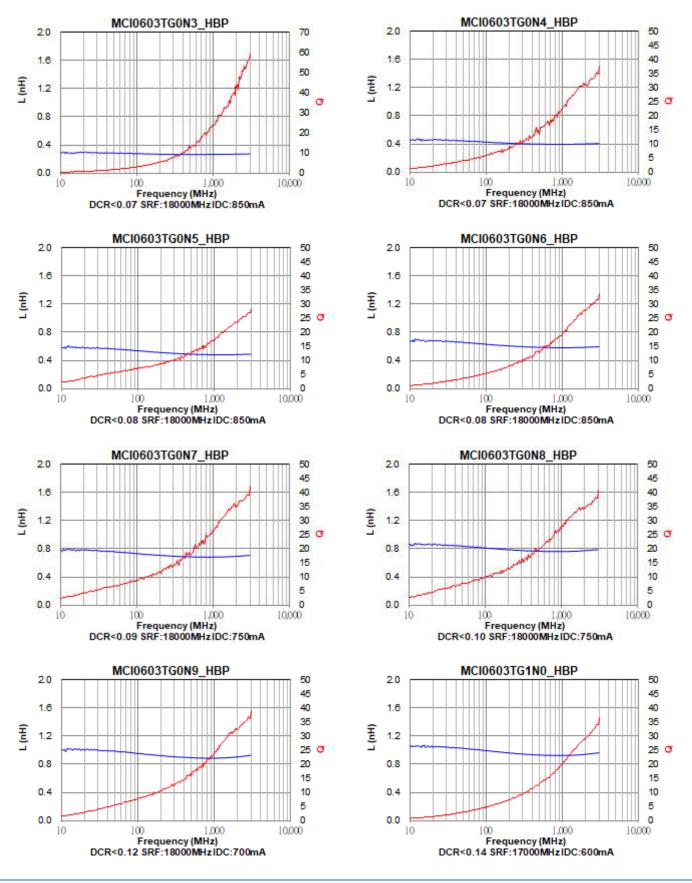
MCI0603TG Series Engineer Specification

Version: A3

Page 3 of 16

■ All Specifications are subject to change without notice.

www.inpaq.com.tw; www.inpaqgp.com

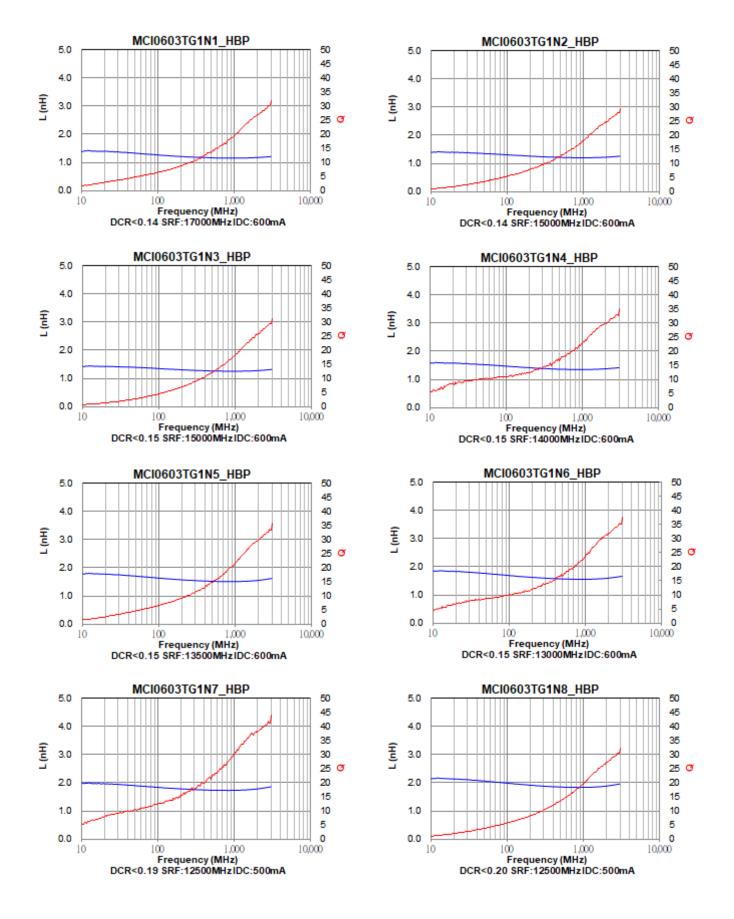


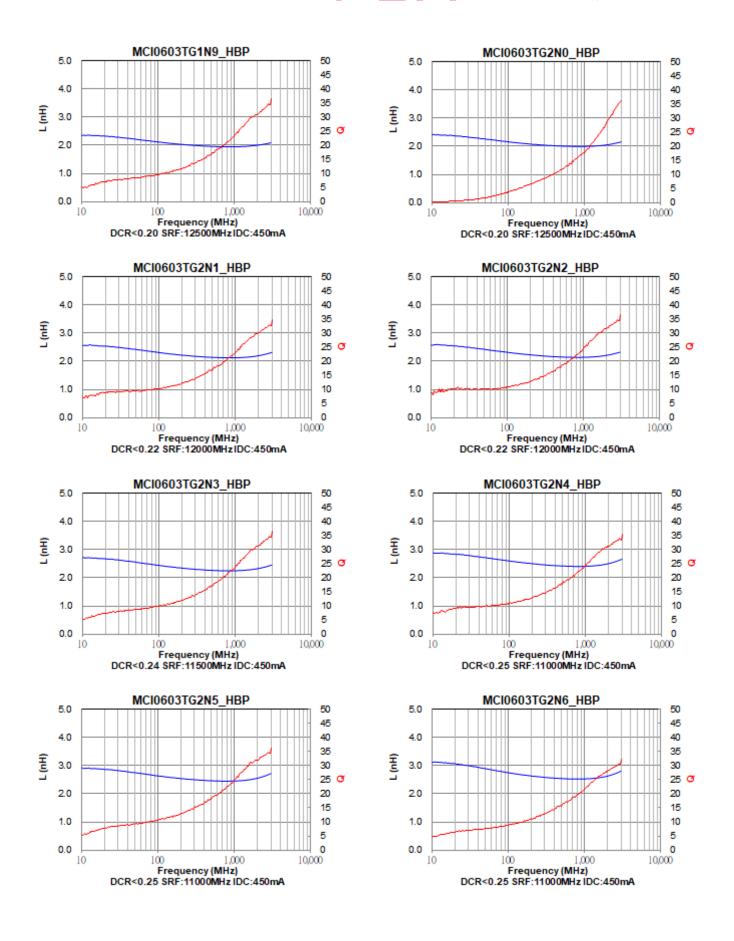
Part No.	Inductance (nH)	Inductance Tolerance	Q (Min.)	Freq. (MHz)	DCR(Ω) Max.	S.R.F (MHz) Min.	Rated Current (mA) Max.
MCI0603TG3N4_HBP	3.4		12	500	0.30	8,000	400
MCI0603TG3N5_HBP	3.5		12	500	0.30	8,000	400
MCI0603TG3N6_HBP	3.6	B=±0.1nH	12	500	0.30	8,000	400
MCI0603TG3N7_HBP	3.7	C=±0.2nH	12	500	0.30	7,000	400
MCI0603TG3N8_HBP	3.8		12	500	0.35	7,000	350
MCI0603TG3N9_HBP	3.9		12	500	0.35	6,500	350
MCI0603TG4N3_HBP	4.3		12	500	0.40	6,500	350
MCI0603TG4N7_HBP	4.7		12	500	0.40	6,500	350
MCI0603TG5N1_HBP	5.1		12	500	0.40	6,500	350
MCI0603TG5N6_HBP	5.6		12	500	0.44	6,000	300
MCI0603TG6N2_HBP	6.2		12	500	0.50	6,000	300
MCI0603TG6N8_HBP	6.8		12	500	0.53	5,400	300
MCI0603TG7N5_HBP	7.5	11 . 20/	12	500	0.55	4,800	250
MCI0603TG8N2_HBP	8.2	H=±3% J=±5%	12	500	0.62	4,800	250
MCI0603TG9N1_HBP	9.1	J=±3%	12	500	0.65	4,500	250
MCI0603TG10N_HBP	10		11	500	0.70	4,000	250
MCI0603TG12N_HBP	12		11	500	0.75	3,700	250
MCI0603TG15N_HBP	15		11	500	0.85	3,100	250
MCI0603TG18N_HBP	18		11	500	1.00	2,800	200
MCI0603TG22N_HBP	22		9	500	1.20	2,500	150
MCI0603TG27N_HBP	27		9	500	1.80	1,800	140
MCI0603TG33N_HBP	33	I_ , 5 0/	7	300	2.10	1,700	120
MCI0603TG39N_HBP	39	J=±5%	7	300	2.40	1,500	120

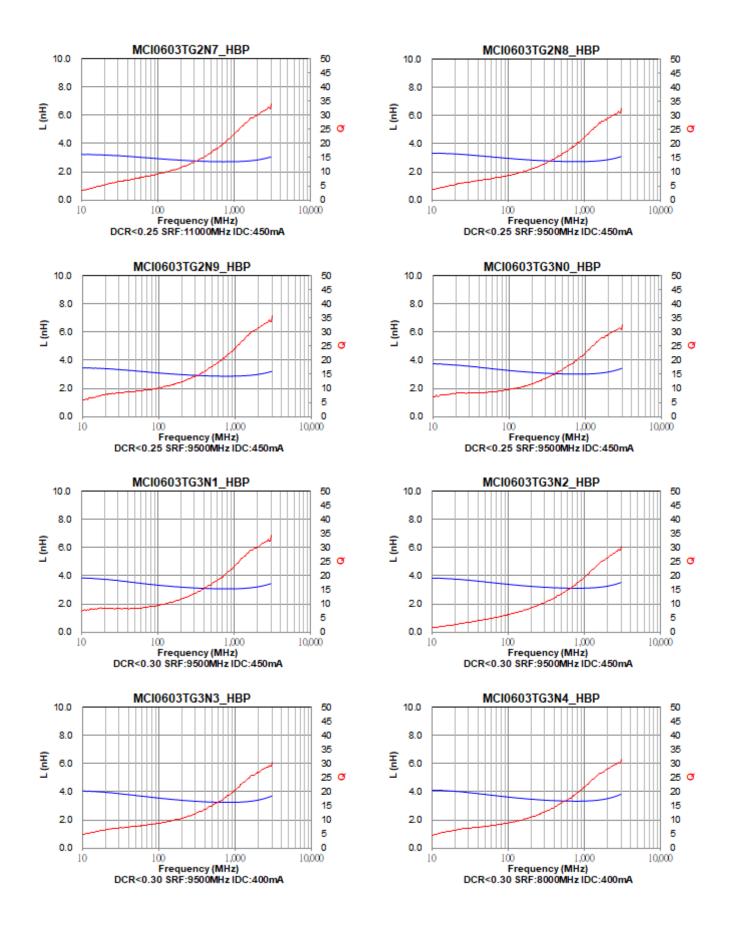
^{**} For special part number which is not shown in the above table, please refer to appendix.

TYPICAL ELECTRICAL CHARACTERISTIC

MCI0603TG Series Engineer Specification


Version: A3


Page 5 of 16


■ All Specifications are subject to change without notice.

www.inpaq.com.tw; www.inpaqqp.com

一 生邦科技股份有限公司 ENPAG TECHNOLOGY CO., LTD.

MCI0603TG3N5 HBP MCI0603TG3N6 HBP 10.0 10.0 50 50 45 45 8.0 40 8.0 40 35 35 L(nH) 6.0 30 6.0 30 25 O 25 O 4.0 20 4.0 20 15 15 10 2.0 10 2.0 5 5 0.0 0.0 0 10 10,000 10 10,000 ency (MHz) Frequency (MHz) DCR<0.30 SRF:8000MHz IDC:400mA DCR<0.30 SRF:8000MHz IDC:400mA MCI0603TG3N7 HBP MCI0603TG3N8 HBP 10.0 10.0 50 50 45 45 8.0 40 8.0 40 35 35 6.0 30 6.0 30 25 25 4.0 20 4.0 20 15 15 10 20 10 20 5 5 0.0 0 0.0 0 10 10,000 10 1,000 10,000 Frequency (MHz)
DCR<0.35 SRF:7000MHz IDC:350mA Frequency (MHz) DCR<0.30 SRF:7000MHz IDC:400mA MCI0603TG3N9_HBP MCI0603TG4N3_HBP 10.0 50 10.0 50 45 45 8.0 40 8.0 40 35 35 L H L(nH) 6.0 30 6.0 30 25 C 25 4.0 20 4.0 20 15 15 2.0 10 2.0 10 5 5 0.0 0 0.0 0 10 1,000 10,000 10 10,000 100 100 1,000 Frequency (MHz) Frequency (MHz) DCR<0.35 SRF:6500MHz IDC:350mA DCR<0.40 SRF:6500MHz IDC:350mA MCI0603TG4N7_HBP MCI0603TG5N1_HBP 20.0 50 20.0 50 45 45 16.0 40 16.0 40 35 35 12.0 30 12.0 30 25 **O** 25

20

15

10

5

10,000

8.0

4.0

0.0

10

8.0

4.0

0.0

20

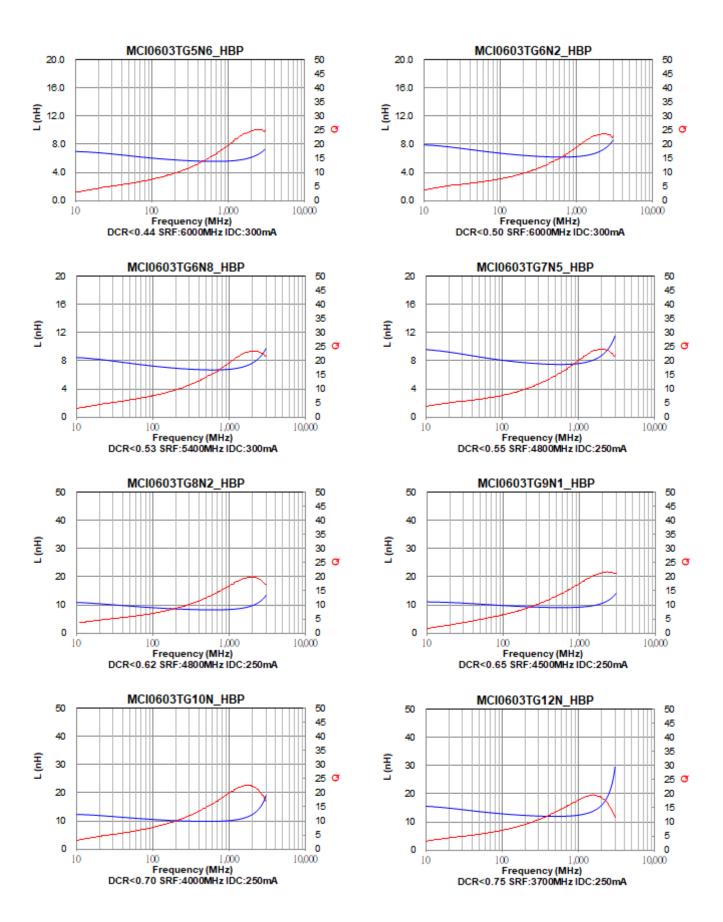
15

10

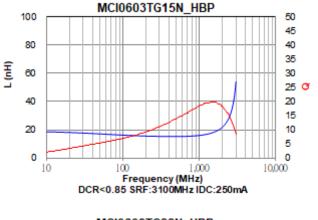
5

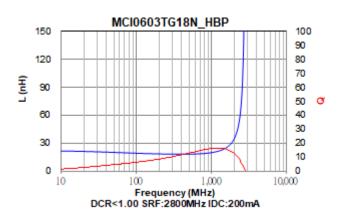
0

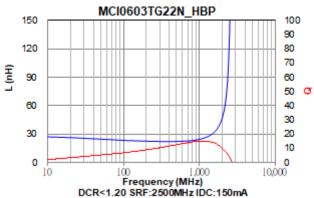
10,000

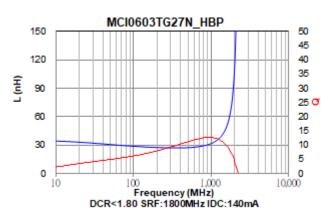

Frequency (MHz)

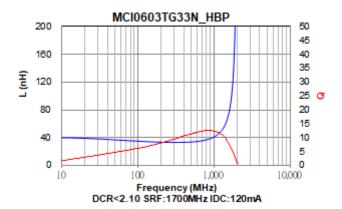
DCR<0.40 SRF:6500MHz IDC:350mA

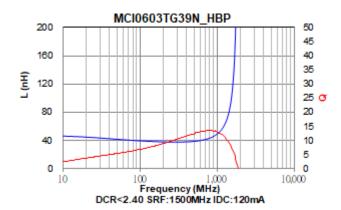

1,000

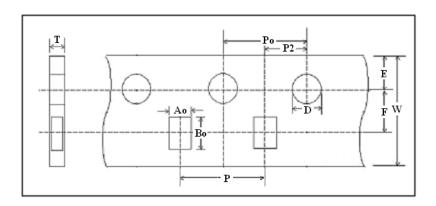

Frequency (MHz)


DCR<0.40 SRF:6500MHz IDC:350mA



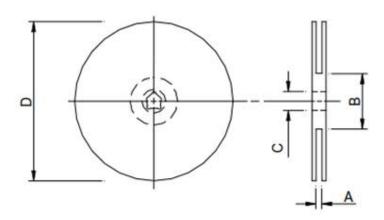

一 生邦科技股份有限公司 ENPAG TECHNOLOGY CO., LTD.





■ TAPE AND REEL SPECIFICATIONS

> Tape Dimension / 8mm


> Taping Dimension

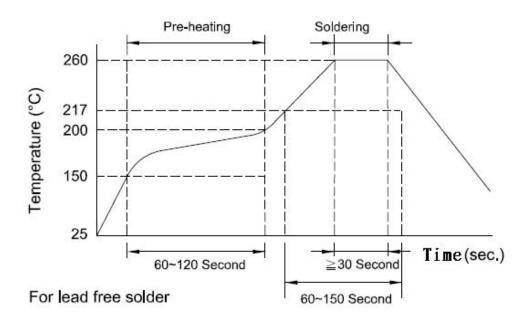
Unit: mm

TYPE	0603
Symbol	PAPER
W	8.00 ± 0.10
Р	2.00 ± 0.05
Е	1.75 ± 0.05
F	3.50 ± 0.05
D	1.55 ± 0.05
Po	4.00 ± 0.10
P2	2.00 ± 0.05
Ao	0.36 ± 0.02
Во	0.66 ± 0.02
Т	0.42 ± 0.02

■ REEL DIMENSION

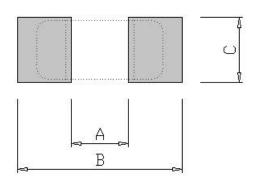
Туре	A(mm)	B(mm)	C(mm)	D(mm)
7"	10±1.5	50 or more	13.2±1.0	178±2.0

■ PACKAGING DIMENSION QUANTITY


Packaging style: Taping

Reel packaging quantity: 15,000 pcs/reel

Per the box: 5 Reels



■ RECOMMENDED SOLDERING CONDITIONS

■ LAND PATTERNS REFLOW SOLDERING

Solder land information:

TYPE	۸	В	C
(mm)	A	D	C
0603	0.20 ~ 0.30	0.80 ~ 0.90	0.20 ~ 0.30
(EIA 0201)	$(0.008 \sim 0.012)$	$(0.031 \sim 0.035)$	$(0.008 \sim 0.012)$

MCI0603TG Series Engineer Specification

Version: A3

Page 14 of 16

■ All Specifications are subject to change without notice.

www.inpaq.com.tw; www.inpaqgp.com

■ RELIABILITY AND TEST CONDITION

Item	Test Condition	Requirements
Thermal Shock	 Temperature : -55 ~ +125°C Cycle : 100 cycles Dwell time : 30minutes Measurement : at ambient temperature 24 hrs after test completion 	 No mechanical damage Inductance value should be within ± 10 % of the initial value Q vale should be within ± 20% of the initial value
Operational Life	 Temperature: 85 ± 5°C Testing time: 1000 hrs Applied current: Full rated current Measurement: At ambient temperature hours after test completion 	 No mechanical damage Inductance value should be within ± 10 % of the initial value Q vale should be within ± 20% of the initial value
Biased Humidity	 Temperature : 40°C ± 2°C Humidity : 90 ~ 95 % RH Test time : 1000 hrs Apply current : full rated current Measurement : at ambient temperature hrs after test completion 	 No mechanical damage Inductance value should be within ± 10 % of the initial value Q vale should be within ± 20% of the initial value
Resistance to Solder Heat	 Solder temperature : 260 ± 5°C Flux : Rosin DIP time : 10 ± 1 sec 	 More than 95 % of terminal electrode should be covered with new solder Inductance value should be within ± 10 % of the initial value Q vale should be within ± 20% of the initial value
Solderability	 Solder temperature : 235 ± 5°C Flux : Rosin DIP time : 5 ± 1 sec 	More than 95 % of terminal electrode should be covered with new solder No mechanical damage

MCI0603TG Series Engineer Specification	Version: A3	Page 15 of 16
■ All Specifications are subject to change without notice.	www.inpaq.com.tw	; www.inpaggp.com

Item	Test Condition	Requirements
	 Solder the chip to test jig then apply a force in the direction shown in below. The soldering shall be done with the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 	
Bending Strength	Pressurize Amplitude 2 mm	No mechanical damage

■ NOTE

The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be affected.