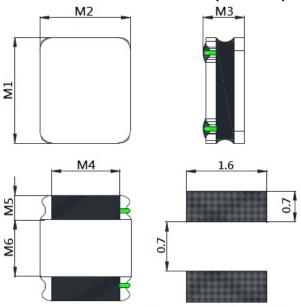

PRODUCT SPECIFICATION

DOCUMENT NO. ENS000154650								
DESCRIPTION	DRAWN BY	DESIGNED BY	CHECKED BY	APPROVED BY				
CSMC2010D-XXXM-LRH	Zhuoling Tang	Tieqiao Gong	Shengjun Zhou	Dick Wang				



SCOPE: THIS SPECIFICATION APPLIES TO COATED RESIN CHOKE.

1.PART NUMBER IDENTIFICATION:

2.MECHANICAL DIMENSIONS: (Unit: mm)

Recommended PCB pattern

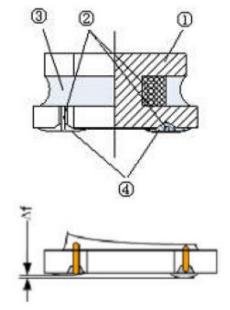
UNIT:mm

ITEM	M1	M2	M3	M4	M5	M6
DIM.	2.0	1.6	1.05	1.20	0.6	0.8
TOL.	±0.2	±0.2	MAX.	±0.2	±0.2	±0.2

3. RATING TEMPERATURE

Operating Temperature Range (individual chip without packing): -40°C~+125°C (Including Self-heating). Storage Temperature Range (packaging conditions): -10°C~+40°C and R.H. 70% (Max.).

TITLE : POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH


DOCUMENT NO. ENS000154650

SPEC REV.: A0 Page 1 of 7

 $\underline{www.inpaq.com.tw} \; ; \\ \underline{www.inpaqgp.com}$

4. STRUCTURE

 \triangle f: Clearance between terminal and the surface of plate must be 0.1mm max when coil is placed on a flat plate.

5. MATERIAL LIST

NO.	COMPONENTS	MATERIAL
1	Core	Ni-Zn Ferrite
2	Wire	Polyurethane system enameled copper wire
3	Magnetic Glue	Epoxy resin and magnetic powder
4	Electrodes	Ag Ni Sn or Fe Ni Cu + Sn Alloy

TITLE : POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH

DOCUMENT NO. ENS000154650

SPEC REV.: A0 Page 2 of 7

 $\underline{www.inpaq.com.tw} \; ; \; \underline{www.inpaqgp.com}$

6.ELECTRICAL SPECIFICATIONS:

Part number	Inductance (µH) ±20%	DC Resistance (mΩ) MAX.	DC Resistance (mΩ) TYP.	I sat (A) MAX.	I sat (A) TYP.	Irms (A) MAX.	Irms (A) TYP.
CSMC2010D-R24M-LRH	0.24	40	33	3.70	4.10	2.80	3.10
CSMC2010D-R33M-LRH	0.33	48	41	3.00	3.70	2.40	2.90
CSMC2010D-R47M-LRH	0.47	60	50	2.30	2.85	2.30	2.60
CSMC2010D-R68M-LRH	0.68	76	63	1.95	2.45	2.00	2.20
CSMC2010D-1R0M-LRH	1.0	114	96	1.65	1.85	1.45	1.60
CSMC2010D-1R5M-LRH	1.5	174	145	1.35	1.65	1.10	1.20
CSMC2010D-2R2M-LRH	2.2	265	215	1.20	1.45	1.05	1.15
CSMC2010D-3R3M-LRH	3.3	345	290	1.00	1.20	0.85	0.95
CSMC2010D-4R7M-LRH	4.7	480	400	0.75	0.90	0.70	0.80
CSMC2010D-6R8M-LRH	6.8	800	610	0.70	0.85	0.55	0.60
CSMC2010D-8R2M-LRH	8.2	940	730	0.68	0.78	0.53	0.60
CSMC2010D-100M-LRH	10	1000	800	0.65	0.70	0.50	0.60
CSMC2010D-120M-LRH	12	1430	1100	0.62	0.70	0.36	0.42
CSMC2010D-220M-LRH	22	1700	1400	0.32	0.38	0.32	0.36

NOTE:

- 1. Test Frequency: 1MHz/1.0V
- 2. Rated current: Isat (max.) or Irms (max.), whichever is smaller.
- 3. Saturation Current: Max. Value, DC current at which the inductance drops less than 30% from its value without current; Typ. Value, DC current at which the inductance drops 30% from its value without current.
- 4. Irms: DC current that causes the temperature rise (\triangle T) from 20°C ambient. For Max. Value, \triangle T < 40 °C; for Typ. Value, \triangle T is approximate 40°C.
- 5. The part temperature (ambient + temp. rise) should not exceed 125°C under worst case operating conditions. Circuit design, component placement, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

6. MSL: Level 1

TITLE : POWER CHOKE (ROHS+H.F.)
CSMC2010D-XXXM-LRH

DOCUMENT NO. ENS000154650

SPEC REV.: A0 Page 3 of 7

www.inpaq.com.tw; www.inpaqgp.com

7. RELIABILITY PERFORMANCE

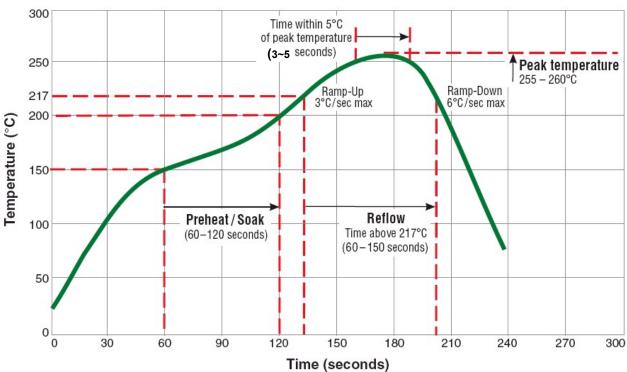
Items	Requirements	Test Methods and Remarks		
Terminal Strength	No removal or split of the termination or other defects shall occur. Fig.7.1-1	 Solder the inductor to the testing jig (glass epoxy board shown in Fing.7.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 10N force. Keep time: 5s 		
Resistance to Flexure	No visible mechanical damage. P230 F230 F10 F10 F10 F10 F10 F10 F10 F	 Solder the chip to the test jig (glass epoxy board) using eutectic solder. Then apply a force in the direction shown as Fig.7.2-1. Flexure: 2mm Pressurizing Speed: 0.5mm/sec Keep time: 30±1s Test board size: 100×40×1.0 Land dimension 		
Vibration	1. No visible mechanical damage. 2. Inductance change: Within ±10%	 Solder the chip to the testing jig (glass epoxy board shown as the following figure) using eutectic solder The chip shall be subjected to a simple harmonic motion having total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz The frequency range from 10 to 55Hz and return to 10Hz shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total of 6 hours). 		
Temperature coefficient	Inductance change: Within ±20%	 Temperature: -40°C~+125°C With a reference value of +20°C , change rate shall be calculated 		
Solderability	90% or more of electrode area shall be coated by new solder	 The test samples shall be dipped in flux, and then immersed in molten solder. Solder temperature: 245±5°C Duration: 5±1sec. Solder: Sn/3.0Ag/0.5Cu Flux: 25% resin and 75% ethanol in weight Immersion depth: all sides of mounting terminal shall be immersed 		
Thermal Shock	1. No visible mechanical damage. 2. Inductance change: Within ±10% 125°C Ambient Temperature -40°C 30 min. 20sec. (max.) Fig.7.7-1	 Temperature and time: -40±3°C for 30±3 min→125°C for 30±3min, please refer to Fig.7.7-1. Transforming interval: Max, 20sec Tested cycle: 100 cycles The chip shall be stabilized at normal condition for 1~2 hours before measuring 		

TITLE: POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH DOCUMENT NO. ENS000154650

SPEC REV.: A0 Page 4 of 7

Items	Requirements	Test Methods and Remarks
Resistance to Low Temperature	1. No visible mechanical damage 2. Inductance change: Within ±10%	 Temperature and time: -40±3°C Duration: 1000±²⁴ hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
Resistance to High Temperature	No visible mechanical damage Inductance change: Within ±10%	 Temperature and time: 125±2°C Duration: 1000±²⁴ hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
Damp Heat	1. No visible mechanical damage 2. Inductance change: Within ±10%	 Temperature and time: 60±2°C Humidity: 90% to 95% RH Duration: 1000±²⁴ hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
Loading Under Damp Heat	1. No visible mechanical damage 2. Inductance change: Within ±10%	 Temperature and time: 60±2°C Humidity: 90% to 95% RH Duration: 1000±²⁴ hours The chip shall be stabilized at normal condition for 1~2 hours before measuring
Loading at High Temperature	1. No visible mechanical damage 2. Inductance change: Within ±10%	 Temperature and time: 85±2°C Applied current: Rated current Duration: 1000±²⁴ hours The chip shall be stabilized at normal condition for 1~2 hours before measuring

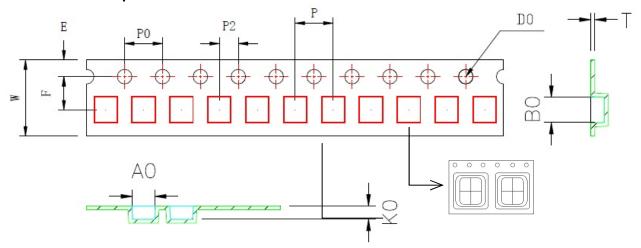
TITLE: POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH DOCUMENT NO. ENS000154650


SPEC REV.: A0 Page 5 of 7

 $\frac{www.inpaq.com.tw}{I-FM-04-40}; \frac{www.inpaqgp.com}{I-FM-04-40}$

8.REFLOW CHART

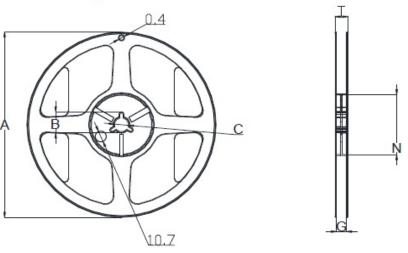
TITLE: POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH DOCUMENT NO. ENS000154650


SPEC REV.: A0 Page 6 of 7

 $\underline{www.inpaq.com.tw} \; ; \\ \underline{www.inpaqgp.com}$

9.PACKING

9-1. Carrier Tape Dimensions



UNIT:mm

	W	Α0	В0	КО	Р	F	E	D0	P0	P2	Т
DIM.	8.00	2.00	2.40	1.20	4.00	3.5	1.75	1.50	4.00	2.00	0.25
TOL.	±0.3	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	±0.05

9-2. Reel Dimensions

Carrier Tape Reel

UNIT:mm

Туре	Α	В	С	G	N	Т
8mm	178	20.7±0.8	13±0.4	9	60	10.8

9-3. Packaging Quantity

2KPCS/ Reel, 20KPCS/ Inner Box, 80KPCS/ Outer Box

TITLE : POWER CHOKE (ROHS+H.F.) CSMC2010D-XXXM-LRH

DOCUMENT NO. ENS000154650

SPEC REV.: A0 Page 7 of 7

www.inpaq.com.tw; www.inpaqgp.com