
Analog

F4-(S)MOE-N090R38-3P

F4-(S)MOE-N090R38-3P

Little Compact / Narrow Sensitivity

OMNI-DIRECTIONAL Bottom PORT

Best sound electronics

Creative technology starts from respecting of life of the individuals

Best sound electronics

Value no1. Micro sound provider

We offer you happiness with our excellent technology beyond an ordinary sound what you expect

Best sound electronics Value no1. Micro sound provider

Keep basic fundamentals to fill sound with new innovations

1. INTRODUCTION

- Analog MEMS Microphone
- Single Mode
- Bottom Port Type Sensitivity is Typical -38dBV/Pa
- Narrow Sensitivity +/-1dB
- Omni-directional
- RF Shielded with embedded Ground
- Compatible with Sn/Pb and Halogen-free solder process
- RoHS compliant
- SMD reflow temperature of up to 260°C for over 30 seconds

2. APPLICATIONS

- Smartphones
- · Ear-sets, Bluetooth Headsets
- Smart Speaker, Set Top Box
- Tablet Computers
- Wearable Devices
- Electrical Appliances
- Voice Recognition Systems of Appliances

3. MODEL NO.

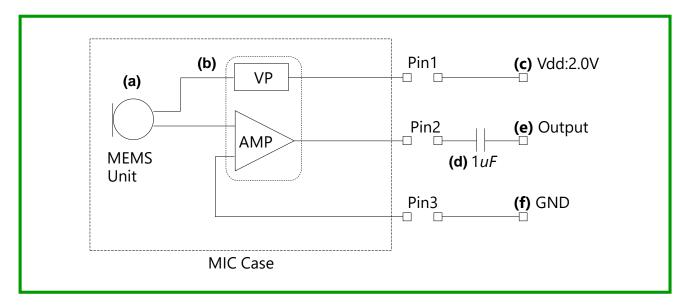
F4-(S)MOE-N090R38-3P

4. ABSOLUTE MAXIMUM RATINGS

Parameter	Absolute maximum rating	Units
Vdd to Ground	3.6	V
OUT to Ground	-0.3 to Vdd+0.3	V
Input Current to Any Pin	1	mA

Caution: Stresses above those listed n "Absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only. Functional operation at these or any other conditions beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" is not implied. Exposure beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" for extended periods may affect device reliability.


5. ELECTRO-ACOUSTIC CHARACTERISTICS

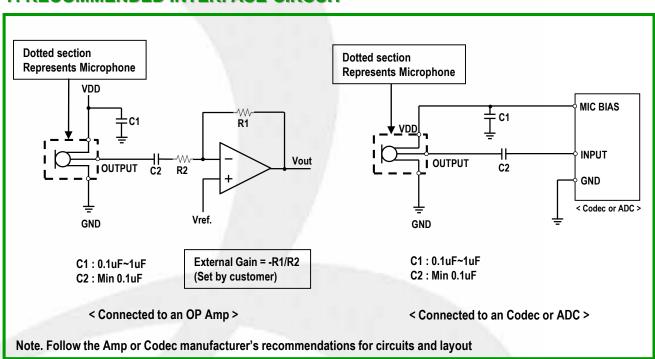
Test Condition : 23 \pm 2°C, Room Humidity = 55 \pm 20 %, VDD=2.0V

Parameter	Conditions	Min	Тур	Max	Units
Directivity		Omni-directional			
Operating Voltage (Vdd)		1.6	-	3.6	V
Sensitivity Change across Voltage	Vdd=1.6V ~ 3.6V		No Change	e	dB
Sensitivity (S)	94dB SPL at 1kHz, 0dB=1V/Pa	-39	-38	-37	dBV/Pa
Low Frequency Roll Off (LFRO)	-3dB relative to 1kHz	·	100	-	Hz
Output Impedance (Ζουτ)	94dBSPL at 1kHz	·	·	200	Ω
Current Consumption	Vdd=1.6 ~ 3.6V	60	-	160	μΑ
Signal to Noise Ratio (SNR)	94dBSPL at 1kHz, A-weighted (20Hz~20kHz)		63		dB(A)
Equivalent Input Noise (EIN)	94dBSPL at 1kHz, A-Weighted (20Hz ~20kHz)	-	31.5	-	dB(A)SPL
Power Supply Rejection (PSR)	100mVp-p square wave at 217Hz, Vdd=1.8V, A-weighted	-	-95	-	dBV(A)
Power Supply Rejection Ratio (PSRR)	200mVp-p sine wave at 1kHz, Vdd=1.8V	-	60	-	dB
	94dBSPL at 1kHz	-	0.2	0.5	
Total Harmonic Distortion	110dBSPL at 1kHz	-	-	1.0	%
(THD)	118dBSPL at 1kHz	-	-	3.0	
	120dBSPL at 1kHz	-	-	5.0	
Acoustic Overload Point (AOP)	THD>10% at 1kHz	121	124	-	dBSPL
DC Output Voltage	Vdd=1.6 ~ 3.6V	·	0.86	-	V
Start-up time		0.1	-	100	ms

6. MEASUREMENT CIRCUIT

(a) MEMS Unit: Membrane & Back Plate (transmit the electric signal modified from sound signal to ASIC)

(b) **ASIC**: Impedance converter (Mechanical Signal → Electric Signal)


(c) Vdd: Power Supply (Operation of ASIC)

(d) **Rectifier Capacitor**: Removed Direct Current Factor

(e) Output: Output Signal of Microphone's Sensitivity

(f) **GND**: Ground

7. RECOMMENDED INTERFACE CIRCUIT

8. TYPICAL FREQUENCY RESPONSE CURVE(FAR FIELD)

Far Field Measurement Condition Temperature : $23 \pm 2 \degree C$ Supply Voltage : 2.0V

Acoustic stimulus: 1Pa (94dB SPL at 1kHz) at 50 cm from the loud-speaker.

The loud-speaker must be calibrated to make a flat frequency response input signal.

Position: The frequency response of microphone unit measured at 50 cm from the loud-speaker.

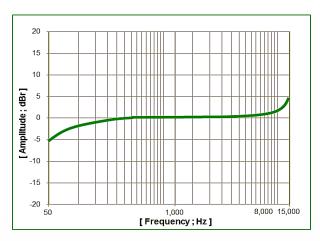


Figure 1. Typical Frequency Response, Normalized to $1\,\text{kHz}$

Figure 3. Typical IDD vs VDD

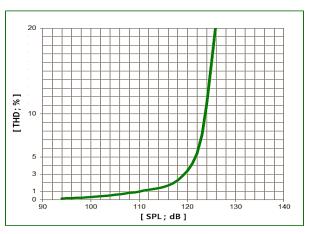


Figure 2. THD vs. Input Level

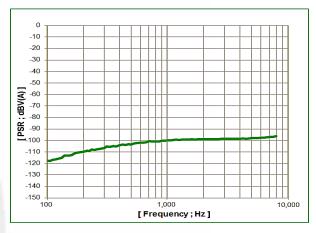
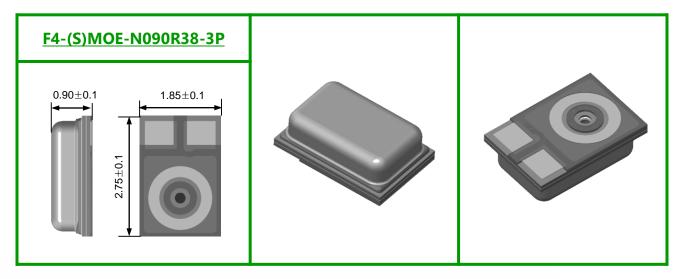


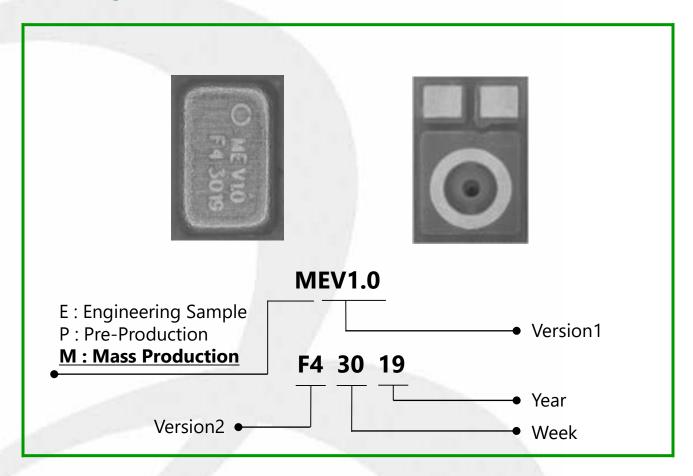
Figure 4. Typical Power Supply Rejection (PSR) vs. Frequency

Frequency Mask Specification

Frequency [Hz]	100	200	400	900	1000	1200	5000	10000	Note	
Lower Limit [dBr]	0	+2	+3	+3	0	+3	+4	+4	OdBr = dBV/Pa at 1 ^{kHz}	
Upper Limit [dBr]	-6	-4	-3	-3	0	-3	-2	-2		

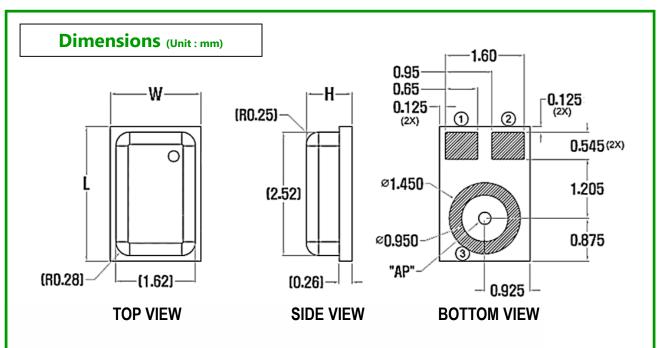
Note: Band Frequency Range


1. Narrow Band : 300Hz ~ 3.4kHz 2. Wide Band : 100Hz ~ 7kHz 3. Super Wide Band : 50Hz ~ 14kHz


9. MECHANICAL CHARACTERISTICS

X PCB design & Pin size can be changed by model No.

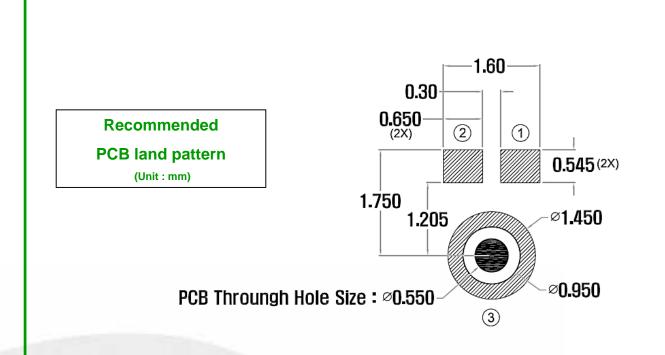
SMD Type


Lettering

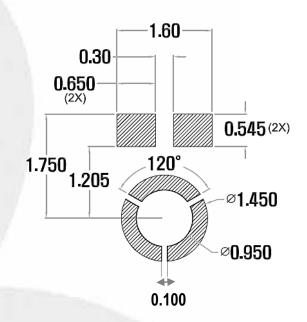
9. MECHANICAL CHARACTERISTICS

- Mechanical dimensions & Pad Lay-out

Item	Dimension	Tolerance (+/-)	Units
Length (L)	2.75	0.10	mm
Width (W)	1.85	0.10	mm
Height (H)	0.90	0.10	mm
Acoustic Port (AP)	Ф 0.25	0.05	mm

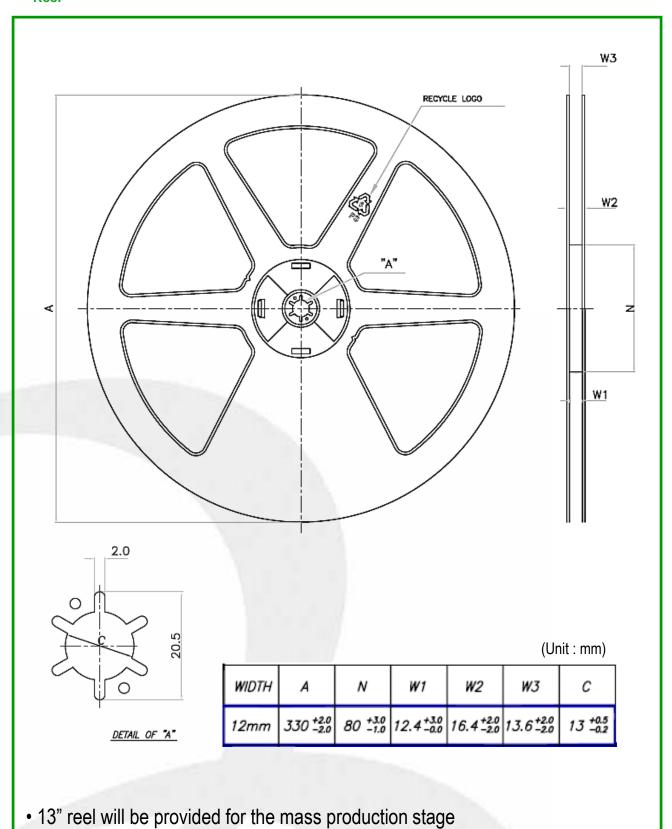

Pin#	Pin Name	Туре	Description
1	Power (VDD)	Power	Power Supply
2	Output (Vout)	Signal	Output Signal
3	GND	Ground	Ground

Note : All ground Pins must be connected to ground. "3"Pin must be sealed by solder paste on the phone PWB. General Tolerance ± 0.08 mm.

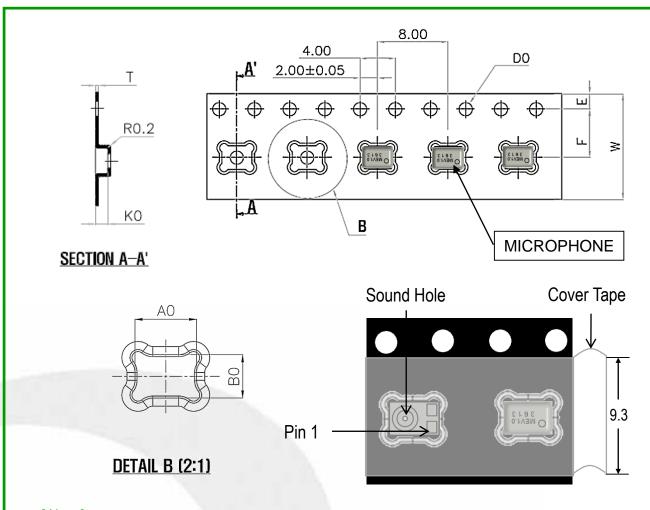

9. MECHANICAL CHARACTERISTICS

- Recommended Land Pattern & Stencil Pattern

Recommended solder stencil pattern (Unit:mm)


(thickness of metal mask: 0.10T)

10. PACKAGING SPECIFICATION

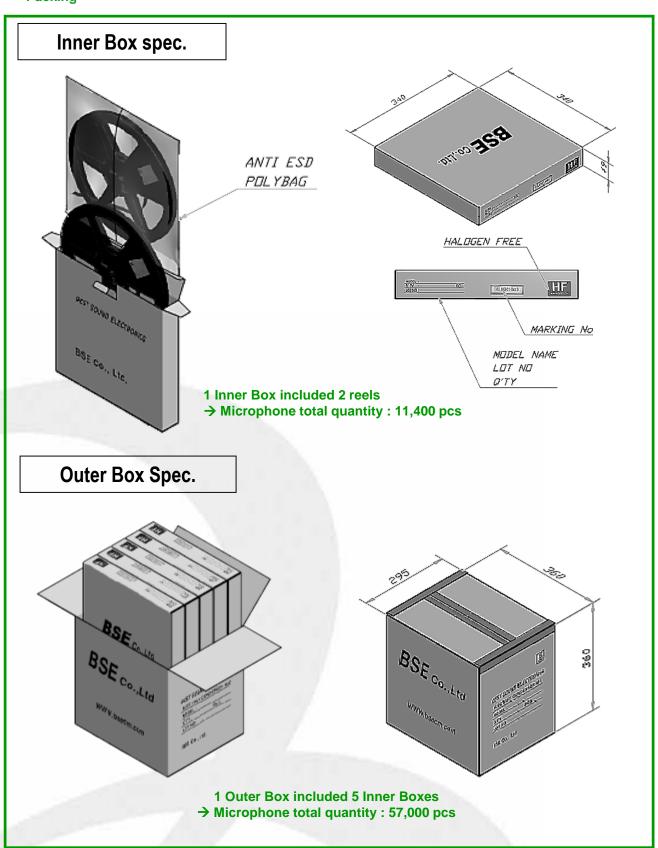

- Reel

10. PACKAGING SPECIFICATION

- Taping

[Note]

- 1. Direction of parts : See above pictures.
- 2. Microphone total quantity (13" Reel): 5,700pcs
- 3. Carrier Tape ESD: $10^2 \sim 10^{10} \Omega$
- 4. Cover Tape Inside ESD : $10^2 \sim 10^{10} \Omega$
- 5. Carrier Tape Material & Color: PS, Black
- 6. Thermo Compression Bonding


A0	2.95±0.05	Ш	1.75±0.10
B0	2.05±0.05	F	5.50±0.05
K0	1.10±0.05	-	0.30±0.05
D0	1.50±0.10	W	12.00±0.30

Unit: mm

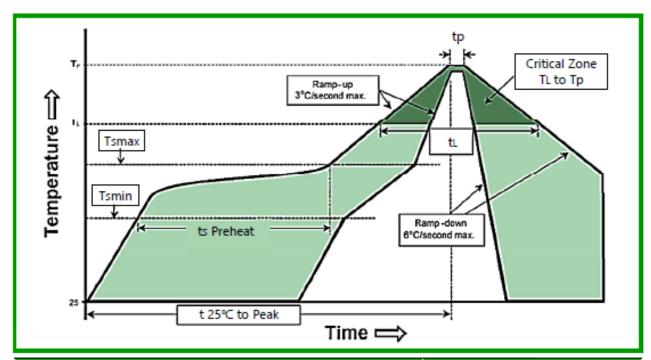
10. PACKAGING SPECIFICATION

- Packing

11. RELIABILITY TEST CONDITIONS

Note : After test conditions are performed, the sensitivity of the microphone shall not deviate more than $\pm 3 \text{dB}$ from its initial value.

TEST	DESCRIPTION			
TEMPERATURE STORAGE	[High Temperature Storage] $+80^{\circ}\text{C} \pm 3^{\circ}\text{C} \times 200\text{hrs}$ (The measurement to be done after 2 hours of conditioning at room temperature)			
	[Low Temperature Storage] $-30^{\circ}C \pm 3^{\circ}C \times 200 hrs$ (The measurement to be done after 2 hours of conditioning at room temperature)			
TEMPERATURE CYCLE	$(-25^{\circ}\text{C} \pm 2^{\circ}\text{C} \times 30\text{min} -> +20^{\circ}\text{C} \pm 2^{\circ}\text{C} \times 10\text{min} -> +70^{\circ}\text{C} \pm 2^{\circ}\text{C} \times 30\text{min} -> +20^{\circ}\text{C} \pm 2^{\circ}\text{C} \times 10\text{min}) \times 5\text{cycles}$ (The measurement to be done after 2 hours of conditioning at room temperature)			
THERMAL SHOCK	$(+85^{\circ}\text{C}\pm2^{\circ}\text{C} -> -40^{\circ}\text{C}\pm2^{\circ}\text{C}$ Change time : 20sec) x 96cycles Maintain : 30min (The measurement to be done after 2 hours of conditioning at room temperature)			
HIGH TEMPERATURE AND HUMIDITY	$+85^{\circ}$ C \pm 2, $85\pm$ %RH, Bias(3.6V) x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature)			
	$+70^{\circ}$ C±2, 95±%RH x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature)			
ESD (Electrostatic	Air discharge : ± 8 kV, ± 10 kV, ± 12 kV, ± 15 kV Vdd, Data, CLK, L/R, GND Pad each 5 times (Non-ground)			
Discharge)	Contact discharge : ± 2 kV, ± 4 kV, ± 6 kV, ± 8 kV Vdd, Data, CLK, L/R, GND Pad each 5 times (Non-ground)			
VIBRATION Signal 5Hz to 500Hz, acceleration spectral density of 0.01g²/Hz in each of 3 120 min in each axis (360min in total)				
DROP	To be no interference in operation after dropped to steel floor 18 times from 1.52 meter height in state of packing			
REFLOW SENSITIVITY	5 reflow cycles. Refer to reflow profile from specification item 14.			


12. TEMPERATURE CONDITIONS (Maximum Ratings)

12.1 STORAGE TEMPERATURE : -40°C ~ +100°C

12.2 OPERATING TEMPERATURE: -40°C ~ +100°C

13. SOLDER REFLOW PROFILE

Profile Feature	Pb-Free Assembly	
Preheat/Soak		
Temperature Min (Tsmin)	150°C	
Temperature Min (Tsmax)	200℃	
Time(ts) from (Tsmin to Tsmax)	60 ~ 120 seconds	
Ramp-up rate (TL to Tp)	3℃/second max.	
Liquidous temperature(TL)	217℃	
Time(tL) maintained above TL	60 ~ 150 seconds	
Peak package body temperature (Tp)	260℃	
Time(tp) within 5°C of the specified classification Temperature(Tc)	20 ~ 40 seconds	
Ramp-down rate (Tp to TL)	6℃/second max.	
Time 25℃ to peak temperature	8 minutes max.	

[Notes]

- 1. Solder Reflow Profile based on IPC/JDEC J-STD-020 Revision D.
- Do not pull a vacuum over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device.
- Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- Recommend no more than 5 cycles.
- Shelf life: Twelve(12) months when devices are to be stored in factory supplied, unopened ESD moisture sensitive bag under maximum environmental condition of 30°C, 70% R.H.
- Exposure: Devices should not be exposed to high humidity, high temperature environment. MSL (Moisture sensitivity level) Class 1.
- Out of bag: Maximum of 90 days of ESD moisture sensitive bag, assuming maximum conditions of 30℃, 70% R.H.