R1208x Series

PWM Low Supply Current Step-up DCIDC Converter

NO.EA-314-211027

OUTLINE

The R1208x is a low supply current CMOS-based PWM control step-up DC/DC converter. Internally, a single converter consists of an NMOS FET, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over-voltage protection circuit (OVP), a thermal shutdown protection circuit and current drivers for four white LED channels.

By simply using an inductor, a resistor, capacitors and a diode, white LEDs can be driven with constant current and high efficiency. The LED current can be determined by the value of current setting resistor. The brightness of the LEDs can be adjusted quickly by applying a PWM signal (200 Hz to 300 kHz) to the CE pin.
Protection circuits included in the R1208x are a current limit circuit which limits the Lx peak current, an UVLO circuit which prevents the malfunction of the device at low input voltage, an OVP circuit which monitors the excess output voltage and a thermal shutdown protection circuit which detects the overheating of the device and stops the operation to protect the device from damage.

The R1208x is offered in 12-pin DFN(PL)2730-12 package

FEATURES

- Input Voltage Range 2.7 V to 22 V
- Supply Current Typ. $600 \mu \mathrm{~A}$
- Standby Current Typ. $1.5 \mu \mathrm{~A}$
- Lx Current Limit
Typ. 2 A
- Overvoltage Protection (OVP)
Typ. 23 V / $33 \mathrm{~V} / 43.5 \mathrm{~V}$
- Oscillator Frequency
Typ. 750 kHz / 450 kHz
- Maximum Duty Cycle
95\% (750 kHz) / 97\% (450 kHz)
- Nch MOSFET ON Resistance
Typ. 0.28Ω
- Undervoltage Lockout (UVLO)
Typ. 2.4 V
- Thermal Shutdown
Typ. $150^{\circ} \mathrm{C}$
- LED Dimming Control .. By sending a PWM signal (200 Hz to 300 kHz) to the CE pin
- Package DFN(PL)2730-12

APPLICATIONS

- LED backlight driver for LCD displays for portable equipment
- LED backlight driver for LCD displays for Tablets and Note PCs.

SELECTION GUIDE

The OVP threshold voltage and the oscillator frequency are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1208K×12*-TR	DFN(PL)2730-12	$5,000 \mathrm{pcs}$	Yes	Yes

x: Specify the OVP threshold voltage.
(1) 23 V
(2) 33 V
(3) 43.5 V
*: Specify the oscillator frequency.
(A) 750 kHz
(B) 450 kHz

BLOCK DIAGRAMS

R1208x Block Diagram

PIN DESCRIPTION

DFN(PL)2730-12 Pin Configurations
DFN(PL)2730-1 Pin Description

Pin No.	Symbol	Description
1	VIN	Power Input Pin
2	LED1	LED1 pin
3	ISET	LED Current Control Pin
4	Vs	Power Input Pin (VIN < 5 V), Internal Regulator Pin (VIN > 5 V)
5	CE	Chip Enable Pin (Active-high)
6	PGND	Power GND Pin
7	Lx	Switching Pin
8	Vout	Output Pin
9	GND 1	Analog GND Pin
10	LED4	LED 4 Pin
11	LED3	LED 3 Pin
12	LED2	LED 2 Pin

[^0]
ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings			(GND / PGND $=0 \mathrm{~V}$)
Symbol	Item	Rating	Unit
VIN	VIn Pin Voltage	-0.3 to 24	V
Vs	Vs Pin Voltage	-0.3 to 6.5	V
$V_{C E}$	CE Pin Voltage	-0.3 to 6.5	V
$V_{\text {ISET }}$	Iset Pin Voltage	-0.3 to 6.5	V
Vout	Vout Pin Voltage	-0.3 to 48	V
VLX	Lx Pin Voltage	-0.3 to 48	V
VLed	LED1, LED2, LED3, LED4 Pin Voltage	-0.3 to 24	V
ILX	Lx Pin Current	2500	mA
PD	Power Dissipation* ${ }^{*}$ (JEDEC STD. 51-7 Test Land Pattern)	3100	mW
Tj	Junction Temperature Range	-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range	-55 to 125	${ }^{\circ} \mathrm{C}$

${ }^{* 1}$ Refer to POWER DISSIPATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
$\mathrm{V}_{\mathbb{N}}$	Input Voltage	2.7 to 22	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

The specifications surrounded by \square are over $-40^{\circ} \mathrm{C} \leq T a \leq 85^{\circ} \mathrm{C}$ and guaranteed by design but not tested in production.

Electrical Characteristics					$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$	
Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
VIN	Operating Input Voltage		2.7		22	V
IDD	Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, no load, no switching		0.6		mA
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, no load, switching, R1208Kx12A		2.2		mA
		$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, no load, switching, R1208Kx12B		1.5		mA
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=22 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		1.5	10.0	$\mu \mathrm{A}$
Vuvlor	UVLO Detector Threshold	VIN falling	2.3	2.4		V
Vuvloz	UVLO Released Voltage	VIN rising		VuvLO1 $+0.1$	2.6	V
Vcen	CE Input Voltage "H"	$\mathrm{V}_{\text {IN }}=22 \mathrm{~V}$	1.5			V
Vcel	CE Input Voltage "L"	VIN $=2.7 \mathrm{~V}$			0.4	V
Rce	CE Pull-down Resistance	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$		1200		k Ω
Vs	V ${ }_{\text {S }}$ Active Voltage	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$		5		V
Iled	LED1-4 Current Accuracy	$\begin{aligned} & \mathrm{R}_{\text {ISET }}=10 \mathrm{k} \Omega, 1 \text { string }=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}, \end{aligned}$	-3\%	20	+3\%	mA
Δ led $1 \Delta \mathrm{Ta}$	LED1-4 Current Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}, \mathrm{V}^{\text {IN }}=3.6 \mathrm{~V}$		± 100		${ }_{/^{\circ} \mathrm{C} \mathrm{C}}^{\mathrm{ppm}}$
ILedm	LED1-4 Current Matching	$\begin{aligned} & \text { (} \text { max } \text { I IAVE }) / I_{\text {AVE, }} \\ & 1 \text { string }=20 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \end{aligned}$			2.5	\%
Iledm2	LED1-4 Current Matching 2	$\begin{aligned} & \left(I_{\text {MAX }}-I_{\text {AVE }}\right) / I_{\text {AVE }}, \\ & 1 \text { string }=2 \mathrm{~mA} \end{aligned}$			10	\%
CEduty	CE Input Duty Range	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=10 \mathrm{k} \Omega$	2.3		100	\%
Iledmax	LED1-4 Max. Current Setting (100\% dimming)	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	80	100		mA
VLed1	LED1-4 Active Voltage	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, 1$ string $=30 \mathrm{~mA}$		0.75		V
ILedleak	LED1-4 Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LEDI }-4}=22 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		0	3.0	$\mu \mathrm{A}$
Ron	NMOS ON Resistance	$\mathrm{I}_{\mathrm{LX}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		0.28		Ω
Ilxleak	NMOS Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {LED1-4 }}=22 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$		0	3.0	$\mu \mathrm{A}$
ILxLIM	NMOS Current Limit	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$	1.5	2	2.5	A
fosc	Oscillator Frequency	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}(\mathrm{R} 1208 \mathrm{~K} \times 12 \mathrm{~A})$	675	750	825	kHz
		$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}(\mathrm{R} 1208 \mathrm{~K} \times 12 \mathrm{~B})$	400	450	500	kHz

ELECTRICAL CHARACTERISTICS (continued)

The specifications surrounded by \square are over $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$. and guaranteed by design but not tested in production.

Electrical Characteristics						$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
Maxduty	Maximum Duty Cycle	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		92			\%
Vovp1	Vout OVP Detector Threshold	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text {, }$ Vout rising	R1208K112*	22	23	24	V
			R1208K212*	31.5	33	34.5	V
			R1208K312*	42	43.5	45	V
Vovp2	Vout OVP Release Voltage	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V} \text {, }$Vout falling	R1208K112*	21	$\begin{gathered} \text { Vovp1 } \\ -0.5 \end{gathered}$		V
			R1208K212*	30.5	Vovp1 -1		V
			R1208K312*	39.5	$\begin{gathered} \hline \text { Vovp1 } \\ -1.5 \end{gathered}$		V
Vovp3	LED OVP Detector Threshold	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {LED1-4 }}$ rising			10	11.5	V
Tss	Soft Start Time	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		10	15	32	ms
TTSD	Thermal Shutdown Temperature	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$			150		${ }^{\circ} \mathrm{C}$
TTSR	Thermal Shutdown Release Temperature	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$			120		${ }^{\circ} \mathrm{C}$

All test items listed under ELECTRICAL CHARACTERISTICS are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$).

THEORY OF OPERATION

Operation of Step-Up DCIDC Converter and Output Current
 <Basic Circuit>

<Current through L>

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.
When the transistor turns ON, the voltage of inductor L becomes equal to Vin voltage. The increase value of inductor current (i1) will be

$$
\Delta \mathrm{i} 1=\mathrm{V} \operatorname{IN} \times \operatorname{ton} / \mathrm{L}
$$

Formula 1

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be
\qquad

$$
\Delta \mathrm{i} 2=\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right) \times \text { topen } / \mathrm{L} .
$$

Formula 2

At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of i1 and i2 is same at regular condition.

$$
\text { VIN } \times \text { ton / L = (Vout - VIN }) \times \text { toff / L ... Formula } 3
$$

The duty at continuous mode will be

$$
\text { duty }(\%)=\text { ton } /(\text { ton }+ \text { toff })=(\text { Vout - Vin }) / \text { Vout... Formula } 4
$$

The average of inductor current at $t f=$ toff will be

$$
\text { IL(Ave.) = Vin } \times \text { ton / (} 2 \times \mathrm{L} \text {) ... Formula } 5
$$

If the input voltage = output voltage, the lout will be

$$
\begin{aligned}
& \text { lout }=\mathrm{V}_{\text {IN }}{ }^{2} \times \text { ton } /(2 \times \mathrm{L} \times \text { Vout }) \\
& \text { Formula } 6
\end{aligned}
$$

If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be

$$
\begin{aligned}
& \text { ILmax }=\text { lout } \times \text { Vout } / \mathrm{VIN}+\mathrm{VIN} \times \text { ton } /(2 \times \mathrm{L}) \\
& \text { Formula } 7 \\
& \text { ILmax }=\text { lout } \times \text { Vout } / V_{\text {IN }}+\text { Vin } \times \mathrm{T} \times\left(\text { Vout }-\mathrm{VIN}_{\text {IN }}\right) /(2 \times \mathrm{L} \times \text { Vout }) \\
& \text { Formula } 8
\end{aligned}
$$

The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value.
The explanation above is based on the ideal calculation, and the loss caused by Lx switch and the external components are not included.
The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or V_{IN} is low, the loss of V_{IN} is generated with on resistance of the switch. Moreover, it is necessary to consider Vf of the diode (approximately 0.8 V) about V out.

- Soft-Start Function

At startup, by forcibly switching Lx for a certain period of time, Vout is raised with the LED current flowing about 4 mA . During this period, the rush current is suppressed by gradually increasing the current limit. After the time required to raise the Vout has elapsed, gradually change the LED current from about 4 mA to the set current value. The soft start time (Tss = typ. 15 ms) is the time from CE= "L" \rightarrow "H" to 90% of the set current for $\mathrm{l}_{\text {Led }}$.

- Current Limit Function

If the peak current of inductor (ILmax) exceeds the current limit, current limit function turns the driver off and turns it on in every switching cycle to continually monitor the driver current.

- Under Voltage Lockout (UVLO) Function

UVLO function stops DC/DC operation to prevent malfunction when the supply voltage falls below the UVLO detector threshold.

- Overvoltage Protection (OVP) Circuit

OVP circuit monitors the Vout pin voltage and halts oscillation once it reaches the OVP detect voltage. Oscillation resumes when the Vout pin voltage decreases below 0.3 V . In case the cause of the excess Vout pin voltage is not removed the OVP circuit will stop and resume repeatedly in order to limit the Vout pin voltage.

- Thermal Shutdown Function

Thermal shutdown circuit detects overheating of the converter if the output pin is shorted to the ground pin (GND) etc. and stops the converter operation to protect it from damage. If the junction temperature of the device exceeds the specified temperature, the thermal shutdown stops the converter operation and resumes the converter operation if the junction temperature decreases below the thermal shutdown release temperature.

APPLICATION INFORMATION

Typical Applications

Typical Application 1. 10 LEDs in series $\times 4$ parallels, up to 80 mA per LED, 5 V or higher power supply voltage, using 4 LED channels

Typical Application 2. 10 LEDs in series $x 4$ parallels, up to 80 mA per LED, less than 5 V power supply voltage, using 4 LED channels

Nisshinbo Micro Devices Inc.

Typical Application 3. 10 LEDs in series x 16 parallels, up to 20 mA per LED, 5 V or higher power supply voltage, using 4 LED channels

Typical Application 4. 10 LEDs in series $x 6$ parallels, up to 40 mA per LED, 5 V or higher power supply voltage, using 3 LED channels

Typical Application 5. 10 LEDs in series $\times 2$ parallels, up to 160 mA per LED, 5 V or higher power supply voltage, using 4 LED channels

Typical Application 6. 10 LEDs in series $\times 2$ parallels, up to 80 mA per LED, less than 5 V power supply voltage, using 2 LED channels

Recommended Inductors

Frequency (kHz)	L1 ($\mu \mathrm{H}$)	Parts No.	Rated Current (mA)	Size (mm)
750	10	VLS252010ET-100M	550	$2.5 \times 2.0 \times 1.0$
		VLF302512MT-100M	620	$3.0 \times 2.5 \times 1.2$
		VLF403212MT-100M	900	$4.0 \times 3.2 \times 1.2$
		VLF504012MT-100M	1320	$5.0 \times 4.0 \times 1.2$
450	22	VLF302512MT-220M	430	$3.0 \times 2.5 \times 1.2$
		VLF403212MT-220M	540	$4.0 \times 3.2 \times 1.2$
		VLF504012MT-220M	890	$5.0 \times 4.0 \times 1.2$
		VLS5045EX-220M	1800	$5.0 \times 5.0 \times 4.5$

Recommended Components

Symbol	Rated Voltage (V)	Parts No.
D1	60	CRS12
	60	RB060M-60
C1	25	C3225JB1E475M
C2	50	C2012X5R1H225K
	C3	25
C4	6.3	C1608X55R121E224M

${ }^{* 1}$ When ILED $=80 \mathrm{~mA}$ or lower at 750 kHz

- Selection of Inductor

Peak current of inductor (ILmax) in normal mode when the efficiency is 80% can be calculated by the following formula.

$$
\text { ILmax }=1.25 \times \text { lout } \times V_{\text {Out }} / \mathrm{V}_{\text {IN }}+0.5 \times \mathrm{V}_{\text {IN }} \times\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right) /\left(\mathrm{L1} \times \mathrm{V}_{\text {OUT }} \times \text { fosc }\right)
$$

When starting up the IC or when adjusting the brightness of LEDs, a large transient current may flow into an inductor (L1). ILmax should be equal or smaller than the current limit of the IC. When deciding the rated current of inductor, ILmax should be considered. It is recommended that L 1 with $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$ be used.

- Selection of Capacitor

Set a $1 \mu \mathrm{~F}$ or more input capacitor (C1) between the $\mathrm{V}_{\mathbb{I}}$ and GND pins as close as possible to the pins. Set a $1 \mu \mathrm{~F}$ output capacitor (C2) between the Vout and GND pins if ILED $\leq 80 \mathrm{~mA}$ and an inductor is $10 \mu \mathrm{H}$. In other cases, set a $2.2 \mu \mathrm{~F}$ or more output capacitor (C2) between the Vout and GND pins.

- Selection of Diode

For a rectifier diode, use a schottky barrier diode that has low V_{F}.
It is recommended to select a schottky barrier diode that has low reverse current and low parasitic capacitance.

- VS Pin Connection at $\mathrm{V}_{\mathrm{IN}}<5 \mathrm{~V}$

When using the VS pin at $\mathrm{V}_{\mathrm{IN}}<5 \mathrm{~V}$, it is recommended that the V_{IN} pin and the VS pin be short-circuited each other. Refer to Typical Application 2 and 6. There's no capacitor required between the VS pin and the GND pin. If the Vin pin and the VS pin are not shorted each other, a capacitor (C3) is required between the VS pin and the GND pin. Refer to Typical Application 1, 3, 4, and 5.

- LED Current Setting

The LED current (lledset) when a "H" PWM signal is applied to the CE pin (Duty = 100\%) can be determined by the value of feedback resistor ($\mathrm{RSET}_{\mathrm{SET}}$). If a $10 \mathrm{k} \Omega$ resistor ($\mathrm{R}_{\text {SET }}$) is placed between the ISET pin and the GND pin, the LED pin current will be set to 20 mA .

$$
\begin{aligned}
& \operatorname{ILEDSET}=0.103 \times R_{\text {SET }} /\left(41.5 \mathrm{k}+\mathrm{R}_{\mathrm{SET}}\right) \\
& \text { Choose } 4.4 \mathrm{k} \Omega(10 \mathrm{~mA}) \text { to } 143 \mathrm{k} \Omega(80 \mathrm{~mA}) \text { for } R_{\mathrm{SET}} .
\end{aligned}
$$

By using the application example of Typical Application 5, the LED current can be set between 80 mA to 160 mA . The LED current can be set up to 320 mA by using the four LED pins.

- LED Dimming Control

The brightness of the LEDs can be adjusted by applying a PWM signal to the CE pin. If the High-Duty of PWM input of the CE is Hduty, the current of LED can be calculated by the following formula.

$$
I_{\text {LED }}=\text { Hduty } \times I_{\text {LEDSET }}
$$

The minimum High-duty of a PWM signal can be controlled up to $2.3 \%\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$.
However, the Iled current is controlled to approximately 4 mA during the soft start time.
By inputting "L" voltage for a certain period of time (Typ. 12 ms for R1208KxxxA/ 18 ms for R1208KxxxB), the IC goes into standby mode and turns off LEDs.

- PWM Dimming Adjustment Frequency

The frequency range of a PWM signal should be set within the range of 200 Hz to 300 kHz .
In the case of using a 20 kHz or less PWM signal for dimming the LEDs, the increasing or decreasing of the inductor current (IL) may generate noise in the audible band. In this case, connect a capacitor (C4) between the ISET pin and GND pin.
In the case of using a 20 kHz or more PWM signal, connecting a capacitor is not required. Refer to Typical Application 2, Typical Application 5 and Typical Application 6 for details.

- Unused LED Current Source

Unused LED pin should be connected to GND. When using two or three LED pins, it is recommended that the rest of the LED pins should be connected as below.
Using two LED pins: LED 2 and LED 4 should be connected to GND. Refer to Typical Application 6.
Using three LED pins: LED 4 should be connected to GND. Refer to Typical Application 4.

Mark Specification (DFN(PL)2730-12)

(1) (2)(3) (4): Product Code... Refer to MARK SPECIFICATION TABLE (DFN(PL)2730-12)
 (5) (6): Lot Number ... Alphanumeric Serial Number

DFN(PL)2730-12 Mark Specification

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

Mark Specification Table (DFN(PL)2730-12)

R1208x Mark Specification Table

Product Name	(1) (2) (3)4
R1208K112A	D Y 0 0
R1208K212A	D Y 0 1
R1208K312A	D Y 0 2
R1208K112B	D Y 0 3
R1208K212B	D Y 0 4
R1208K312B	D Y 0 5

TECHNICAL NOTES

- Current Path on PCB

Figure 1 and Figure 2 show flows of current paths of the application circuits when MOSFET is ON and when MOSFET is OFF, respectively. Parasitic elements (impedance, inductance or capacitance) in the paths pointed with red arrows in Figure 1 and Figure 2 influence stability of the system and cause noise outbreak. It is recommended that these parasitic elements be minimized. In addition, except for the paths of LED load, it is recommended that the all wirings of the current paths be made as short and wide as possible.

Figure 1. MOSFET-ON

Figure 2. MOSFET-OFF

- Layout Guide for PCB

- Place C1 as close as possible to the V_{IN} and GND pins. Also, connect the GND pin to the wider GND plane.
- Make the $L x$ land pattern as small as possible.
- Make the wirings between the $L \times$ pin, the inductor and the diode as short as possible. Also, connect C2 as close as possible to the cathode of the diode.
- Place C2 as close as possible to the GND pin.
- PCB Layout

Nisshinbo Micro Devices Inc.

TYPICAL CHARACTERISTICS

1) Efficiency vs. Output Current of R1208xx12A/B

1-1) Efficiency vs. Output Current with Different Input Voltages

TYPICAL CHARACTERISTICS (continued)

R1208×312B
VLF504012MT-220M/12LED $\times 4$ Parallel (VOUT=33.7V at 80 mA)

R1208×312A
VLF504012MT-100M / 10LED $\times 4$
Parallel(VOUT $=28 \mathrm{~V}$ at 80 mA)

R1208×312A
VLF504012MT-100M / 12LED $\times 4$
Parallel(VOUT=33.7V at 80 mA)

TYPICAL CHARACTERISTICS (continued)

1-2) Efficiency vs. Output Current with Different Inductors (Vout $=28 \mathrm{~V}$ at 80 mA)

R1208×312A

TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

2) Onduty vs. $I_{\text {LED }}\left(I_{\text {set }}=10 \mathrm{k} \Omega\right)$

3) Electrical Characteristics

3-1) Supply Current (No switching) vs. Ambient Temperature

TYPICAL CHARACTERISTICS (continued)

3-2) Supply Current (Switching) vs. Ambient Temperature

3-3) UVLO Voltage vs. Ambient Temperature

3-4) VS Voltage vs. Ambient Temperature

TYPICAL CHARACTERISTICS (continued)

3-5) LED Current Accuracy vs. Ambient Temperature

3-6) Channnel Matching vs. Ambient Temperature
1 String: 20 mA

3-7) Channel Matching vs. Ambient Temperature 1 String: 2 mA

TYPICAL CHARACTERISTICS (continued)

3-8) NMOS ON Resistance vs. Ambient Temperature

3-9) NMOS Limit Current vs. Ambient Temperature

3-10) Operating Frequency vs. Ambient Temperature

TYPICAL CHARACTERISTICS (continued)

3-11) Maxduty vs. Ambient Temperature

3-12) Vоит OVP Detector Threshold vs. Ambient Temperature

Maximum Duty R1208Kx12B

3-13) LED OVP Detector Threshold vs. Ambient Temperature

TYPICAL CHARACTERISTICS (continued)

3-14) Soft-start Time vs. Ambient Temperature

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	$\quad$$\quad 0.3 \mathrm{~mm} \times 23 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	3100 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=32^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t})$	$\psi j \mathrm{j}=8^{\circ} \mathrm{C} / \mathrm{W}$

日ja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DFN(PL)2730-12 Package Dimensions (Unit: mm)

Nisshinbo Micro Devices Inc.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

NiSSHiNBO

Nisshinbo Micro Devices Inc.

Official website
 https://www.nisshinbo-microdevices.co.jp/en/

Purchase information
https://www.nisshinbo-microdevices.co.jp/en/buy/

[^0]: ${ }^{* 1}$ The exposed tab is substrate level (GND). It is recommended that the exposed tab be connected to the ground plane on the board or otherwise be left floating.

