

# High Output Current, Rail-to-Rail Input / Output Single CMOS Operational Amplifiers

1.5MHz typ.

#### **■ FEATURES**

AEC-Q100 Grade 1 Qualified

• High output current  $\pm 100$ mA typ. (200mA<sub>PP</sub> typ.) • Operating temperature  $T_{opr} = -40$ °C to 125°C

• Rail-to-Rail input / output

High EMI immunity

Supply voltage
Supply current
Open loop gain
Input bias current
Slew rate
6.8V to 36V
9.5mA typ.
100dB typ.
1pA typ.
3.5V/µs typ.

Unity gain frequencyThermal shutdown

Current limit

• Package TO-252-5-L3

#### ■ APPLICATIONS

- Angle resolver
- Motor driver

Ver.1.0

- Speaker driver
- 4mA to 20mA Transmitter
- Liner power booster

#### **■ DESCRIPTION**

The NJU77903 is a 36V operable Rail-to-Rail input/output CMOS operational amplifier featuring an output current capacity of  $200 \text{mA}_{PP}$  typ.

It is suitable for high voltage and high output current applications such as drive motors for hybrid and electric vehicles and resolver excitation applications that are angle detection sensors for EPS.

In such applications, high output current was supported by configuring the circuit with multiple parts such as operational amplifiers and transistors, which led to complicated circuit design and larger ECU. By using the NJU77903, it contributes to simplification of design and reduction in size and weight of the mounting board and ECU.

#### **■ RELATED PRODUCTS**

| PRODUCT NAME | FEATURES                                      |
|--------------|-----------------------------------------------|
| NJU7870-Z2   | Resolver excitation amplifier for automotives |

#### **■ TYPICAL CHARACTERISTICS**

#### ■ RESOLVER EXCITATION CIRCUIT







#### **■ PIN CONFIGURATION**

| PRODUCT NAME     | NJU77903DL3-H                                        |
|------------------|------------------------------------------------------|
| Package          | TO-252-5-L3                                          |
| Pin<br>Functions | [TOP VIEW] PAD  1 V+ 2 OUTPUT 3 V- 4 -INPUT 5 +INPUT |

The PAD have to be wired as short as possible to connect with a  $V^-$  terminal.

#### **■ PRODUCT NAME INFORMATION**



\* The detail information of automotive grades and recommended applications are described in NJR Web site. (https://www.njr.com/electronic\_device/semiconductor/application/automotive.html)

# **■ ORDERING INFORMATION**

| PRODUCT NAME        | PACKAGE     | RoHS | HALOGEN-<br>FREE | TERMINAL<br>FINISH | MARKING | WEIGHT<br>(mg) | MOQ<br>(pcs) |
|---------------------|-------------|------|------------------|--------------------|---------|----------------|--------------|
| NJU77903DL3-H (TE2) | TO-252-5-L3 | Yes  | Yes              | Sn-2Bi             | 77903H  | 301            | 3000         |



#### ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER                                         | SYMBOL           | RATING                                    | UNIT  |
|---------------------------------------------------|------------------|-------------------------------------------|-------|
| Supply Voltage                                    | V+- V-           | 40                                        | V     |
| Differential Input Voltage <sup>(1)</sup>         | V <sub>ID</sub>  | ±36                                       | V     |
| Input Voltage <sup>(2)</sup>                      | V <sub>IN</sub>  | V⁻−0.3 to V⁺+0.3                          | V     |
| Input Current                                     | I <sub>IN</sub>  | ±10 <sup>(3)</sup>                        | mA    |
| Output Terminal Input Voltage <sup>(4)</sup>      | Vo               | V⁻−0.3 to V++0.3                          | V     |
| Power Dissipation <sup>(7)</sup> ( $T_a = 25$ °C) | D                | 2-Layer / 4-Layer                         | mW    |
| TO-252-5-L3                                       | P <sub>D</sub>   | 1190 <sup>(5)</sup> / 3125 <sup>(6)</sup> | ITIVV |
| Storage Temperature                               | T <sub>stg</sub> | -55 to 150                                | °C    |
| Junction Temperature                              | Tj               | 150                                       | °C    |

#### **■ THERMAL CHARACTERISTICS**

| PACKAGE                                | SYMBOL                 | VALUE                                  | UNIT  |
|----------------------------------------|------------------------|----------------------------------------|-------|
| Junction-to-Ambient Thermal Resistance | 0                      | 2-Layer / 4-Layer                      | °C44/ |
| TO-252-5-L3                            | $\theta_{\mathrm{ja}}$ | 105 <sup>(5)</sup> / 40 <sup>(6)</sup> | °CW   |

- (1) Differential voltage is the voltage difference between +INPUT and -INPUT.
- (2) Input voltage is the voltage should be allowed to apply to the input terminal independent of the magnitude of V\*. The normal operation will establish when any input is within the Common Mode Input Voltage Range of electrical characteristics.
- (3) If the input voltage exceeds the supply voltage, the input current must be limited 10mA or less by using a restriction resistance.
- (4) Output voltage is the voltage should be allowed to apply to the output terminal independent of the magnitude of V<sup>+</sup>.
- (5) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4), Cu area: 100 mm<sup>2</sup>.
- (6) 4-Layer: Mounted on glass epoxy board (76.2 mm x 114.3 mm x 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4).
  - (For 4-layer: Applying 74.2 mm × 74.2 mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5.)
- (7) Power dissipation is the power that can be consumed by the IC at  $T_a = 25^{\circ}C$ , and is the typical measured value based on JEDEC condition. When using the IC over  $T_a = 25^{\circ}C$  subtract the value  $[mW/^{\circ}C] = P_D / (T_{stg}(MAX) 25)$  per temperature.
- (8) The PAD have to be wired as short as possible to connect with a V<sup>-</sup> terminal.

#### ■ POWER DISSIPATION vs. AMBIENT TEMPERATURE





#### **■ RECOMMENDED OPERATING CONDITIONS**

| PARAMETER             | SYMBOL           | VALUE      | UNIT |
|-----------------------|------------------|------------|------|
| Supply Voltage        | V+- V-           | 6.8 to 36  | V    |
| Operating Temperature | T <sub>opr</sub> | -40 to 125 | °C   |

# **Automotive NJU77903-H**

■ ELECTRICAL CHARACTERISTICS (V<sup>+</sup> = 12V, V<sup>-</sup> = 0V,  $V_{IC}$  = 6V,  $R_L$  = 10k $\Omega$ ,  $T_a$  = 25°C, unless otherwise noted.)

| SYMBOL          | TEST CONDITIONS                                                                                                                                    | MIN                                                      | TYP                                                             | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIT                                                     |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
|                 | $R_S = 50\Omega$                                                                                                                                   | -                                                        | 1                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |  |
| Vio             | $R_S = 50\Omega$ , $T_a = -40^{\circ}$ C to 125°C                                                                                                  | -                                                        | -                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV                                                       |  |
| ΔVιο/ΔΤ         | $T_a = -40^{\circ}\text{C to } 125^{\circ}\text{C}$                                                                                                | -                                                        | 20                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μV/°C                                                    |  |
| I <sub>B</sub>  |                                                                                                                                                    | -                                                        | 1                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | рА                                                       |  |
| lio             |                                                                                                                                                    | -                                                        | 1                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | рА                                                       |  |
|                 | $V_{O} = 1V$ to 11V, $R_{L} = 10k\Omega$ to V <sup>+</sup> /2                                                                                      | 80                                                       | 100                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                 |  |
| Av              | $V_0$ = 1V to 11V, $R_L$ = 10kΩ to V <sup>+</sup> /2,<br>$T_a$ = -40°C to 125°C                                                                    | 75                                                       | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dB                                                       |  |
|                 | $V_{IC} = 0V \text{ to } 6V, V_{IC} = 6V \text{ to } 12V$                                                                                          | 55                                                       | 75                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
| CMR             | $V_{IC} = 0V$ to 6V, $V_{IC} = 6V$ to 12V,<br>$T_a = -40$ °C to 125°C                                                                              | 50                                                       | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dB                                                       |  |
| .,              | CMR ≥ 55dB                                                                                                                                         | 0                                                        | -                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |  |
| VICM            | CMR ≥ 50dB, T <sub>a</sub> = -40°C to 125°C                                                                                                        | 0                                                        | -                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                        |  |
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
|                 | $R_L = 10k\Omega$ to V <sup>+</sup> /2                                                                                                             | 11.97                                                    | 11.99                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |  |
| .,              | $R_L = 10k\Omega$ to V+/2, $T_a = -40^{\circ}$ C to 125°C                                                                                          | 11.97                                                    | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - V                                                      |  |
| V <sub>OH</sub> | Isource = 100mA                                                                                                                                    | 11.40                                                    | 11.65                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |  |
|                 | Isource = 100mA, T <sub>a</sub> = -40°C to 125°C                                                                                                   | 11.20                                                    | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                        |  |
| VoL             | $R_L = 10k\Omega$ to V <sup>+</sup> /2                                                                                                             | -                                                        | 0.01                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |
|                 | $R_L = 10k\Omega$ to V+/2, $T_a = -40^{\circ}$ C to 125°C                                                                                          | -                                                        | -                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |
|                 | Isink = 100mA                                                                                                                                      | -                                                        | 0.35                                                            | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                        |  |
|                 | I <sub>SINK</sub> = 100mA, T <sub>a</sub> = -40°C to 125°C                                                                                         | -                                                        | -                                                               | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                        |  |
| Isourcelim      |                                                                                                                                                    | -                                                        | 375                                                             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |  |
|                 | T <sub>a</sub> = −40°C to 125°C                                                                                                                    | -                                                        | -                                                               | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mA                                                       |  |
|                 |                                                                                                                                                    | -                                                        | 375                                                             | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |  |
| ISINKLIM        | T <sub>a</sub> = −40°C to 125°C                                                                                                                    | -                                                        | -                                                               | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mA                                                       |  |
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
|                 | No Signal, R <sub>L</sub> = OPEN                                                                                                                   | -                                                        | 9.5                                                             | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |
| IDD             | No Signal, $R_L$ = OPEN, $T_a$ = $-40^{\circ}$ C to 125°C                                                                                          | -                                                        | -                                                               | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - mA                                                     |  |
| O) (D           | V <sup>+</sup> = 6.8V to 36V                                                                                                                       | 70                                                       | 85                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                       |  |
| SVR             | $V^{+} = 6.8V$ to 36V, $T_a = -40^{\circ}$ C to 125°C                                                                                              | 65                                                       | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dB                                                       |  |
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
| f⊤              | $R_L = 10k\Omega$ to V+/2, $C_L = 10pF$                                                                                                            | -                                                        | 1.5                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MHz                                                      |  |
| Фм              | $R_L = 10k\Omega$ to V <sup>+</sup> /2, $C_L = 10pF$                                                                                               | -                                                        | 75                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | deg                                                      |  |
| CD.             | $G_V = 0$ dB, $R_L = 10$ k $\Omega$ to V <sup>+</sup> /2, $C_L = 10$ pF, $V_{IN} = 4$ V <sub>PP</sub> (4V to 8V)                                   | 2.5                                                      | 3.5                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                        |  |
| ок<br>          | $G_V = 0 dB$ , $R_L = 10 k\Omega$ to V <sup>+</sup> /2, $C_L = 10 pF$ , $V_{IN} = 4 V_{PP}$ (4V to 8V), $T_a = -40 ^{\circ} C$ to 125 $^{\circ} C$ | 2.0                                                      | -                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | − V/µs                                                   |  |
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
|                 |                                                                                                                                                    |                                                          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |
| <b>e</b> n      | $f = 10kHz$ , $R_S = 50\Omega$                                                                                                                     | -                                                        | 50                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nV/√Hz                                                   |  |
|                 | SYMBOL  VIO  AVIO/AT  IB  IIO  AV  CMR  VICM  VOH  VOL  ISOURCELIM  IDD  SVR                                                                       | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $V_{IO} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$ | $ \begin{array}{ c c c c } \hline \text{SYMBOL} & \text{TEST CONDITIONS} & \text{MIN} & \text{TYP} \\ \hline \\ V_{IO} & R_S = 50\Omega & - & 1 \\ R_S = 50\Omega, T_a = -40^{\circ}\text{C to } 125^{\circ}\text{C} & - & - \\ - & 20 \\ \hline \\ I_B & - & 1 \\ \hline \\ I_D $ | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ |  |

<sup>(9)</sup> Number specified is the slower of the positive and negative slew rates















Ver.1.0 www.njr.com





















































# **■ TEST CIRCUITS**

• I<sub>DD</sub>



• Vio, CMR, SVR

$$R_S = 50\Omega$$
,  $R_F = 50k\Omega$ 



$$\begin{split} V_{IO} &= \frac{R_S}{(R_S + R_F)} \times (V_o - V_{IC}) \\ CMR &= 20log \frac{\Delta V_{IC} \left(1 + \frac{R_E}{R_S}\right)}{\Delta V_O} \\ SVR &= 20log \frac{\Delta V_s \left(1 + \frac{R_F}{R_S}\right)}{\Delta V_O} \\ V_S &= V^{\dagger} - V^{-} \end{split}$$

• Voh, Vol

$$V_{OH}$$
;  $V_{I}$ ;  $V_{I}$ ;  $V_{I}$  =  $V^{+}/2 + 1V$ ,  $V_{I}$  =  $V^{+}/2 + 1V$ ,  $V_{I}$  =  $V^{+}/2 + 1V$ 





● f⊤

$$R_L = 10k\Omega$$
,  $C_L = 10pF$ 



• SR

$$R_L = 10k\Omega$$
,  $C_L = 10pF$ 



$$V_0$$
 $\Delta V$ 
 $\Delta V$ 

# **Automotive NJU77903-H**

#### **■ APPLICATION NOTE**

The NJU77903 is CMOS operational amplifier that combines rail-to-rail input and output with operating up to 36V. It is able to output high current without the power booster. Therefore, the NJU77903 is suitable for the application requires high operating voltage and high output current.

This application note is one of effectual measures for understanding the dissipation power, thermal shutdown and behavior of current limit, to avoiding unexpected trebles. This application note consists of following matter.

- 1. Calculation of dissipation power
- Thermal shutdown 2.
- 3. Current limit
- 4. Resolver Excitation Circuit
- 5. Input Overvoltage Protection

This description does not assure the actual behavior. The performance of the NJU77903 should be conducted trials using actual equipment.



#### 1. Calculation of dissipation power

The dissipation power is determined by the type of loads. It in case of resistance load and inductance load are shown respectively on this note. The symbols of supply voltage are defined as  $V_{DD}$  and  $V_{SS}$  instead of  $V^+$  and  $V^-$ .

#### 1.1 Calculation of dissipation power with resistance load

The dissipation power from the time 0 to  $\pi$  and it from  $\pi$  to  $2\pi$  are calculated separately.

#### t = 0 to $\pi$

Fig.1.1 shows the internal current from 0 to  $\pi$ , Fig.1.2 shows the output current and the output voltage from 0 to  $\pi$ . Io is the output current and I<sub>A</sub> is the current with the exception of the output current. The dissipation power from 0 to  $\pi$  is expressed by the following equation.

$$\begin{split} P_{R1} &= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} (V_{DD} - V_O \sin \theta)I_O \sin \theta d\theta \\ &= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} (V_{DD} - V_O \sin \theta) \frac{V_O}{R} \sin \theta d\theta \\ &= (V_{DD} - V_{SS})I_A + \frac{2V_{DD}V_O}{\pi R} - \frac{{V_O}^2}{2R} \end{split}$$



Fig.1.1 The internal current from 0 to  $\pi$ 



Fig.1.2 The output current and voltage with resistance load



#### $t = \pi to 2\pi$

Fig.1.3 shows the internal current from  $\pi$  to  $2\pi$ , the dissipation power from  $\pi$  to  $2\pi$  is expressed by the following equation.

$$\begin{split} P_{R2} &= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_{\pi}^{2\pi} (V_O \sin \theta - V_{SS})I_O \sin \theta d\theta \\ &= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_{\pi}^{2\pi} (V_O \sin \theta - V_{SS}) \frac{V_O}{R} \sin \theta d\theta \\ &= (V_{DD} - V_{SS})I_A - \frac{2V_{SS}V_O}{\pi R} - \frac{{V_O}^2}{2R} \end{split}$$

In the case of  $V_{DD} = -V_{SS}$ , the internal loss  $P_R$  is the following result.

$$P_R = (V_{DD} - V_{SS})I_A + \frac{2V_{DD}V_O}{\pi R} - \frac{{V_O}^2}{2R}$$



Fig.1.3 The internal current from  $\pi$  to  $2\pi$ 



Fig.1.4 The output current and voltage with resistance load

# Example for use

The dissipation power is calculated on the following condition.

Condition:

 $V_{DD}/V_{SS} = 6V/-6V$ 

 $V_O = 1V_{PK}$ 

 $R = 20\Omega (I_O = 1V_{PK}/20\Omega = 50 mA_{PK} = 100 mA_{PP})$ 

 $I_A = 1.5 \text{mA}$ 

$$P_{R} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}V_{O}}{\pi R} - \frac{{V_{O}}^{2}}{2R}$$
$$= (6V + 6V) \times 1.5\text{mA} + \frac{2 \times 6V \times 1V}{\pi \times 20\Omega} - \frac{(1V)^{2}}{2 \times 20\Omega} = 184\text{mW}$$

On the single power supply operation ( $V_{DD}/V_{SS} = 12V/0V$ ) with the load resistance ( $R = 20\Omega$  which is the middle point Voltage), the dissipation power is 184mW. It is same as previous one.



#### 1.2 Calculation of dissipation power with inductance load

The dissipation power from the time 0 to  $\pi$  and it from  $\pi$  to  $2\pi$  are calculated separately.

#### t = 0 to $\pi$

Fig.1.5 shows the internal current from 0 to  $\pi$  and Fig.1.7 shows the output current and the output Voltage from 0 to  $\pi$ . Since it is an inductance load, the output current and the output voltage make 90-degree phase difference. Io is the output current and I<sub>A</sub> is the current with the exception of the output current. The loss by output current from 0 to  $\pi$  is expressed by the following equation.

$$P_{LO1} = (V_{DD} - V_O \cos \theta)I_O \sin \theta = V_{DD}I_O \sin \theta - \frac{1}{2}V_OI_O \sin 2\theta$$

The loss by output current from 0 to  $\pi$  is expressed by the following equation.

$$\begin{split} P_{L1} &= (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_0^{\pi} V_{DD}I_O \sin\theta d\theta - \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} V_OI_O \sin2\theta d\theta \\ &= (V_{DD} - V_{SS})I_A + \frac{2V_{DD}I_O}{\pi} \end{split}$$



Fig.1.5 The internal current from 0 to  $\pi$ 

#### $t = \pi to 2\pi$

Fig.1.6 shows the internal current from  $\pi$  to  $2\pi$ . The loss by output current from  $\pi$  to  $2\pi$  is expressed by the following equation.

$$P_{LO2} = (V_{O} \cos \theta - V_{SS})I_{O} \sin \theta = -V_{SS}I_{O} \sin \theta + \frac{1}{2}V_{O}I_{O} \sin 2\theta$$

The Dissipation power from  $\pi$  to  $2\pi$  is expressed by the following equation.

$$P_{L2} = (V_{DD} - V_{SS})I_A + \frac{1}{\pi} \int_{\pi}^{2\pi} - V_{SS}I_O \sin\theta d\theta + \frac{1}{\pi} \int_{\pi}^{2\pi} \frac{1}{2} V_OI_O \sin2\theta d\theta = (V_{DD} - V_{SS})I_A - \frac{2V_{SS}I_O}{\pi}$$

In the case of  $V_{DD} = -V_{SS}$ , the dissipation power is the following result.

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi}$$



Fig.1.6 The internal current from  $\pi$  to  $2\pi$ 



Fig.1.7 The output current and output voltage with inductance load



#### Example for use

The dissipation power is calculated on the following condition.

Condition:

 $V_{DD}/V_{SS} = 6V/-6V$ 

 $I_0 = 50 \text{mApk} (100 \text{mApp})$ 

 $I_A = 1.5 \text{mA}$ 

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi} = (6V + 6V) \times 1.5mA + \frac{2 \times 6V \times 50mA}{\pi} = 209mW$$

On the Single power supply operation whose equivalent circuit is Fig.1.8, the dissipation power is as follows.

Condition:

 $V_{DD}/V_{SS} = 12V/0V$ 

 $I_0 = 50 \text{mA}_{PK} (100 \text{mA}_{PP})$ 

 $I_A = 1.5 \text{mA}$ 

$$P_{L} = (V_{DD} - V_{SS})I_{A} + \frac{2V_{DD}I_{O}}{\pi} = (6V + 6V) \times 1.5 \text{mA} + \frac{2 \times (12V/2) \times 50 \text{mA}}{\pi} = 209 \text{mW}$$

Fig.1.9 is the supply-voltage dependency of the dissipation power on inductance load. The NJU77903 should be operated in lower than package power (P<sub>D</sub>).



Fig.1.8 Equivalent circuit (Single Supply and Dual Supply)



Fig. 1.9 The supply voltage dependency of the dissipation power by inductance load. (Single-Supply)



## 1.3 The current with the exception of the Output current

Fig.1.10 shows the evaluation circuit of the current with the exception of the output current. This result shows Fig1.11 and Fig.1.12.



Fig.1.10 The current with the exception of the output current



Fig.1.11 The current with the exception of the Output current vs. Supply Voltage



Fig.1.12 The current with the exception of the Output current vs. Temperature



#### 2. Thermal Shutdown

The NJU77903 has thermal shutdown (TSD) function in case that dissipation power exceeds package power  $P_D$ . Fig.2.1 shows Thermal Shutdown Temperature vs. Supply Voltage. When the junction temperature exceeds the shutdown temperature approximately 175°C on the supply voltage 12V, the TSD function operates and disables the output current. Under the TSD operation, the output terminal is regarded as high impedance terminal. If the output voltage is necessarily GND Voltage, the output terminal should be connected to GND via resistance.

When the junction temperature cools to recovery temperature approximately 160°C on the supply voltage 12V, the NJU77903 automatically recover from the TSD operation and output current is re-enabled.

The TSD function is not intended to replace proper heat sinking. The NJU77903 should be operated in lower than 150°C the maximum junction temperature.



Fig.2.1 Thermal Shutdown Temperature vs. Supply Voltage



#### 3. Current Limit

The NJU77903 is designed with internal current limit in case of overload condition. Fig.3.1 shows the Output Source Current Limit vs. temperature and Fig.3.2 shows the Output Sink Current Limit vs. temperature respectively. With the increasing in temperature, the limits are reduced.



Fig.3.1 Output Source Current Limit vs. Temperature



Fig.3.2 Output Sink Current Limit vs. Temperature

Fig.3.3 shows Output Source Current vs. time. Output Source Current Limit decreases gradually since junction temperature rises. The output current is temporarily disabled due to TSD operation in T<sub>a</sub> = 150°C line of Fig.3.3 (time = 55msec to 75msec). When the junction temperature falls, the output current is automatically recovered (time = 75msec to 100msec). In order to prevent from damage the NJU77903 should be running under maximum junction temperature.



Output Source Current Limit vs. Time



#### 4. Resolver Excitation Circuit

Fig.4.1 shows the typical resolver excitation circuit using the NJU77903 and the NJM2904. The NJM2904(A) makes midpoint voltage and the NJM2904(B) makes signal phase inversion. Fig.4.2 is the circuit without NJM2904(A), its dominant voltage is given by resistance voltage divider. Fig.4.3 is the circuit omitted NJM2904(A) and NJM2904(B), it is available under the condition using the input signals which have phase difference one another.

Fig.4.4 shows output voltage and current. The output voltage (Vout) is the voltage drop on the inductance load, the output current (lout) is defined as positive side according Fig.4.4. The inductance load makes phase difference between Vout and lout. However, it is not just 90° because of internal resistance on inductance. The performance of resolver excitation should be conducted trials using actual equipment.



NJU77903

NJU77903

NJM2904

Fig.4.1 Resolver Excitation Circuit

Fig.4.2 Resolver Excitation Circuit (This version omitted NJM2904(A))



Fig.4.3 Resolver Excitation Circuit (This version omitted NJM2904)







Output Voltage and Output Current of Resolver Excitation Circuit



## 5. Input Overvoltage Protection

If the input voltage exceeds the supply rail, you must use a limiting resistor as shown in Fig.5.1, because you must be limited to less than the input current of absolute maximum ratings. Resistance value of the current limiting and can be calculated by the following equation.



$$I_{IN} = \frac{V_{SIG} - V^{+}}{R_{IN}} \le 10 \text{mA}, \left(V_{SIG} > V^{+}\right)$$

Fig.5.1a Input Overvoltage (V<sub>SIG</sub> > V<sup>+</sup>)



$$I_{IN} = \frac{V^- - V_{SIG}}{R_{IN}} \le 10 \text{mA}, \ (V_{SIG} < V^-)$$

Fig.5.1b Input Overvoltage (V<sub>SIG</sub> < V<sup>-</sup>)



# TO-252-5-L3

## **■ PACKAGE DIMENSIONS**

Unit: mm



# **■ EXAMPLE OF SOLDER PADS DIMENSIONS**





# TO-252-5-L3

# ■ PACKING SPEC TAPING DIMENSIONS





| SYMBOL | DIMENSION      | REMARKS          |
|--------|----------------|------------------|
| Α      | $6.9 \pm 0.1$  | BOTTOM DIMENSION |
| В      | 10.5 ± 0.1     | BOTTOM DIMENSION |
| D0     | 1.5 +0.1       |                  |
| D1     | 1.5 +0.1       |                  |
| Е      | 1.75 ± 0.1     |                  |
| F      | $7.5 \pm 0.1$  |                  |
| P0     | $4.0 \pm 0.1$  |                  |
| P1     | $8.0 \pm 0.1$  |                  |
| P2     | $2.0 \pm 0.1$  |                  |
| Т      | $0.3 \pm 0.1$  |                  |
| T2     | 3.4 max        |                  |
| W      | $16.0 \pm 0.3$ |                  |
| W1     | 13.5           | THICKNESS 0.1max |

#### **REEL DIMENSIONS**



| SYMBOL | DIMENSION    |
|--------|--------------|
| Α      | $330 \pm 2$  |
| В      | 80 ± 1       |
| С      | $13 \pm 0.5$ |
| Е      | 2            |
| W      | 17.5 ± 0.5   |
| W1     | $2 \pm 0.5$  |

# **TAPING STATE**



#### **PACKING STATE**





## ■ RECOMMENDED MOUNTING METHOD

# **INFRARED REFLOW SOLDERING PROFILE**



| а | Temperature ramping rate | 1 to 4°C/s       |
|---|--------------------------|------------------|
| h | Pre-heating temperature  | 150 to 180°C     |
| b | Pre-heating time         | 60 to 120s       |
| С | Temperature ramp rate    | 1 to 4°C/s       |
| d | 220°C or higher time     | shorter than 60s |
| е | 230°C or higher time     | shorter than 40s |
| f | Peak temperature         | lower than 260°C |
| g | Temperature ramping rate | 1 to 6°C/s       |

The temperature indicates at the surface of mold package.

# **■ REVISION HISTORY**

| DATE           | REVISION | CHANGES         |
|----------------|----------|-----------------|
| April 19, 2021 | Ver.1.0  | Initial release |



#### [CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions.
  The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
   All other trademarks mentioned herein are the property of their respective companies.
- 3. To ensure the highest levels of reliability, NJR products must always be properly handled.

  The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
  - · Aerospace Equipment
  - · Equipment Used in the Deep Sea
  - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
  - · Life Maintenance Medical Equipment
  - · Fire Alarms / Intruder Detectors
  - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
  - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

