



# 2.5V to 5.5V, 2A Synchronous, Step-Down Converter with Fast Output Discharge

#### DESCRIPTION

The MP2152D is a monolithic, step-down switch-mode converter with integrated internal power MOSFETs. It can achieve up to 2A of continuous output current ( $I_{OUT}$ ) across a wide 2.5V to 5.5V input voltage ( $V_{IN}$ ) range, with excellent load and line regulation. The output voltage ( $V_{OUT}$ ) can be regulated to as low as 0.6V.

The device is ideal for a wide range of applications, including solid-state drives (SSDs), portable devices, as well as other low-power and low-voltage systems.

Constant-on-time (COT) control provides fast transient response and eases loop stabilization.

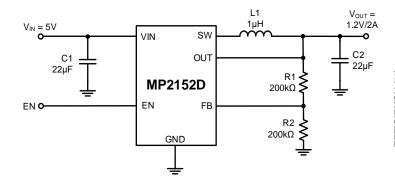
Full protection features include cycle-by-cycle over-current protection (OCP), over-voltage protection (OVP), short-circuit protection (SCP) with hiccup mode, and thermal shutdown.

The MP2152D requires a minimal number of readily available, standard external components, and is available in ultra-small SOT563 package and UTQFN-6 (1.2mmx1.6mm) package.

#### **FEATURES**

- Wide 2.5V to 5.5V Operating Input Voltage (V<sub>IN</sub>) Range
- Up to 2A Output Current (I<sub>OUT</sub>)
- Adjustable Output Voltage (V<sub>OUT</sub>) from 0.6V
- 25µA Low Quiescent Current (IQ)
- 1.1MHz Switching Frequency (f<sub>SW</sub>)
- Enable (EN) for Power Sequencing
- 1% Feedback (FB) Accuracy
- 75mΩ and 45mΩ Internal Power MOSFETs
- 100% Duty Cycle
- Fast Output Discharge
- Output Over-Voltage Protection (OVP)
- Short-Circuit Protection (SCP) with Hiccup Mode
- Available in an SOT563 Package or UTQFN-6 (1.2mmx1.6mm) Package

∽~ MPL


Optimized Performance with MPS Inductor MPL-AL4020 Series

#### **APPLICATIONS**

- Solid-State Drives
- Portable Instruments
- Battery-Powered Devices
- Multi-Function Printers

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

#### TYPICAL APPLICATION



#### **Efficiency vs. Output Current** $V_{IN} = 5V$ , $L1 = 1\mu H$ , $DCR = 10.1 m\Omega$ 100 95 90 **EFFICIENCY (%)** 85 80 75 Vo=3.3V 70 Vo=1.2V Vo=1.8V 65 Vo=2.5V 60 0.001 0.010 0.100 1.000 **OUTPUT CURRENT (A)**



## **ORDERING INFORMATION**

| Part Number* | Package               | Top Marking | V <sub>OUT</sub> Range | MSL Rating |
|--------------|-----------------------|-------------|------------------------|------------|
| MP2152DGQFU  | UTQFN-6 (1.2mmx1.6mm) | See Below   | Adjustable             | 1          |
| MP2152DGTF   | SOT563                | See Below   | Adjustable             | 1          |

<sup>\*</sup> For Tape & Reel, add suffix -Z (e.g. MP2152DGTF-Z).

## **TOP MARKING (MP2152DGQFU)**

LΑ

LL

LA: Product code of MP2152DGQFU

LL: Lot number

## **TOP MARKING (MP2152DGTF)**

BQDY

LLL

BDQ: Product code of MP2152DGTF

Y: Year code LLL: Lot number

## **PACKAGE REFERENCE**

| TOP VIEW    |            | TOP VIEW   |             |            |
|-------------|------------|------------|-------------|------------|
| GND         | 1          | 6 OUT      | GND 1       | 6 OUT      |
| SW          | 2          | 5 FB       | SW 2        | 5 FB       |
| VIN         | 3          | 4 EN       | VIN 3       | 4 EN       |
| UTQ         | PN-6 (1.2) | mmx1.6mm)  | SOT563 (1.0 | 6mmx1.6mm) |
| MP2152DGQFU |            | MP2152DGTF |             |            |



## **PIN FUNCTIONS**

| Pin # | Name<br>(SOT563<br>and<br>UTQFN-6) | Description                                                                                                                                                                            |
|-------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | GND                                | Power ground.                                                                                                                                                                          |
| 2     | SW                                 | <b>Output switching node.</b> The SW pin is the drain of the internal, P-Channel high-side MOSFET (HS-FET). Connect SW to the inductor to complete the converter.                      |
| 3     | VIN                                | <b>Supply voltage.</b> The MP2152D operates from a 2.5V to 5.5V unregulated input voltage (V <sub>IN</sub> ). Use a decoupling capacitor to prevent large voltage spikes at the input. |
| 4     | EN                                 | On/off control.                                                                                                                                                                        |
| 5     | FB                                 | <b>Feedback.</b> To set the output voltage (V <sub>OUT</sub> ), connect an external resistor divider tapped to the FB pin between the output and GND.                                  |
| 6     | OUT                                | <b>Output sense.</b> The OUT pin is the voltage power rail and input sense for $V_{OUT}$ . Use an output capacitor (C2) to reduce the output voltage ripple ( $\Delta V_{OUT}$ ).      |

| ABSOLUTE MAXIMUM RATINGS (1)                  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|
| Supply voltage (V <sub>IN</sub> )             |  |  |  |  |  |
| V <sub>SW</sub> 0.3V (-5V for <10ns) to       |  |  |  |  |  |
| +6.5V (10V for <10ns)                         |  |  |  |  |  |
| All other pins0.3V to +6.5V                   |  |  |  |  |  |
| Junction temperature150°C                     |  |  |  |  |  |
| Lead temperature260°C                         |  |  |  |  |  |
| Continuous power dissipation ( $T_A = 25$ °C) |  |  |  |  |  |
| SOT563 1.5W <sup>(2) (4)</sup>                |  |  |  |  |  |
| QFN                                           |  |  |  |  |  |
| Storage temperature65°C to +150°C             |  |  |  |  |  |

#### **ESD Rating**

#### **SOT563**

| Human body model (HBM)     | 2000V |
|----------------------------|-------|
| Charged device model (CDM) |       |
| UTQFN-6 (1.2mmx1.6mm)      |       |
| Human body model (HBM)     | 2000V |
| Charged device model (CDM) | 1500V |

## Recommended Operating Conditions (3)

| Supply voltage (V <sub>IN</sub> ) | 2.5V to 5.5V                     |
|-----------------------------------|----------------------------------|
| Operating junction temp (         | (T <sub>.I</sub> )40°C to +125°C |

| Thermal Resistance    | $oldsymbol{	heta}_{JA}$ | $oldsymbol{	heta}$ JC |
|-----------------------|-------------------------|-----------------------|
| SOT563                |                         |                       |
| EVL2152D-TF-00A (4)   |                         |                       |
| JESD51-7 (6) (7) (8)  | 130                     | 60°C/W                |
| UTQFN-6 (1.2mmx1.6mm) |                         |                       |
| EVL2152D-QFU-00A (5)  |                         |                       |
| JESD51-7 (6) (7) (8)  | 173                     | 127°C/W               |

#### Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature  $T_J$  (MAX), the junction-to-ambient thermal resistance  $\theta_{JA}$ , and the ambient temperature  $T_A$ . The maximum allowable continuous power dissipation at any ambient temperature is calculated by  $P_D$  (MAX) =  $(T_J$  (MAX)  $T_A$ ) /  $\theta_{JA}$ . Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on EVL2152D-TF-00A, 2-layer PCB.
- 5) Measured on EVL2152D-QFU-00A, 2-layer PCB.
- 6) Measured on JESD51-7, 4-layer PCB.
- The value of θ<sub>JA</sub> given in this table is only valid for comparison with other packages and cannot be used for design purposes.
- These values are calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.



## **ELECTRICAL CHARACTERISTICS**

 $V_{IN}=3.6V$ ,  $T_J=-40^{\circ}C$  to  $+125^{\circ}C$   $^{(9)}$ , typical value is tested at  $T_J=25^{\circ}C$ . The limit over temperature is guaranteed by characterization, unless otherwise noted.

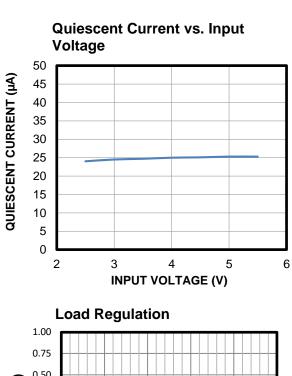
| Parameter                                         | Symbol                  | Condition                                                                                         | Min | Тур  | Max  | Units                   |
|---------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------|-----|------|------|-------------------------|
| Input voltage                                     | VIN                     |                                                                                                   | 2.5 |      | 5.5  | V                       |
| Under-voltage lockout (UVLO) rising threshold     | Vuvlo_rising            |                                                                                                   |     | 2.3  | 2.45 | V                       |
| UVLO threshold hysteresis                         | Vuvlo_hys               |                                                                                                   |     | 200  |      | mV                      |
| Feedback (FB) voltage                             | V <sub>FB</sub>         | $2.5V \le V_{IN} \le 5.5V$                                                                        | 594 | 600  | 606  | mV                      |
| r coasack (i 2) vellage                           |                         | $T_J = -40^{\circ}\text{C to } +125^{\circ}\text{C}$                                              | 591 | 600  | 609  |                         |
| FB current                                        | I <sub>FB</sub>         | V <sub>FB</sub> = 0.63V                                                                           |     | 50   | 100  | nA                      |
| P-channel high-side MOSFET (HS-FET) on resistance | R <sub>DS(ON)_</sub> HS | V <sub>IN</sub> = 5V                                                                              |     | 75   |      | mΩ                      |
| N-channel low-side MOSFET (LS-FET) on resistance  | R <sub>DS(ON)_</sub> Ls | V <sub>IN</sub> = 5V                                                                              |     | 45   |      | mΩ                      |
| Switch leakage                                    |                         | V <sub>SW</sub> = 0V and 6V, V <sub>EN</sub> = 0V,<br>V <sub>IN</sub> = 6V, T <sub>J</sub> = 25°C |     | 0    | 1    | μA                      |
| HS-FET peak current limit                         | I <sub>PEAK_</sub> HS   |                                                                                                   | 2.8 |      | 4    | Α                       |
| LS-FET valley current limit                       | I <sub>PEAK_LS</sub>    |                                                                                                   |     | 2.5  |      | Α                       |
| Zero-current detection (ZCD)                      |                         |                                                                                                   |     | 50   |      | mA                      |
| On time                                           | ton                     | $V_{IN} = 5V, V_{OUT} = 1.2V$                                                                     | 180 | 220  | 260  | ns                      |
| On time                                           | LON                     | $V_{IN} = 3.6V, V_{OUT} = 1.2V$                                                                   | 240 | 300  | 360  | 115                     |
| Switching frequency                               | fsw                     | V <sub>OUT</sub> = 1.2V                                                                           |     | 1100 |      | kHz                     |
| Minimum off time                                  | t <sub>MIN_OFF</sub>    |                                                                                                   |     | 100  |      | ns                      |
| Minimum on time (10)                              | t <sub>MIN_ON</sub>     |                                                                                                   |     | 60   |      | ns                      |
| Soft-start time                                   | tss                     | 10% to 90% V <sub>ОUТ</sub> rise                                                                  |     | 0.5  |      | ms                      |
| Maximum duty cycle                                |                         |                                                                                                   | 100 |      |      | %                       |
| Enable (EN) start-up delay                        |                         | EN on to SW active                                                                                |     | 150  |      | μs                      |
| EN input logic low voltage                        |                         |                                                                                                   |     |      | 0.4  | V                       |
| EN input logic high voltage                       |                         |                                                                                                   | 1.2 |      |      | V                       |
| Output discharge resistor                         | RDISCHARGE              | V <sub>EN</sub> = 0V, V <sub>OUT</sub> = 1.2V                                                     |     | 13   |      | Ω                       |
| EN input ourrent                                  |                         | $V_{EN} = 2V$                                                                                     |     | 1.2  |      | μΑ                      |
| EN input current                                  |                         | $V_{EN} = 0V$                                                                                     |     | 0    |      | μΑ                      |
| Shutdown current                                  | I <sub>SD</sub>         | V <sub>EN</sub> = 0V, T <sub>J</sub> = 25°C                                                       |     | 0    | 1    | μΑ                      |
| Quiescent current                                 | IQ                      | V <sub>EN</sub> = 2V, V <sub>FB</sub> = 0.63V,<br>V <sub>IN</sub> = 5V, T <sub>J</sub> = 25°C     |     | 25   | 30   | μA                      |
| Output over-voltage protection (OVP) threshold    | V <sub>OVP</sub>        |                                                                                                   | 110 | 115  | 120  | % of<br>V <sub>FB</sub> |
| Output OVP hysteresis                             | V <sub>OVP</sub> _HYS   |                                                                                                   |     | 10   |      | % of<br>V <sub>FB</sub> |
| OVP delay                                         | tdelay_ovp              |                                                                                                   |     | 12   |      | μs                      |
| Low-side current                                  |                         | Current flows from SW to GND                                                                      |     | 1.5  |      | A                       |
| Absolute V <sub>IN</sub> OVP                      |                         | After V <sub>OUT</sub> OVP is enabled                                                             |     | 6.1  |      | V                       |
| Absolute V <sub>IN</sub> OVP hysteresis           |                         |                                                                                                   |     | 400  |      | mV                      |

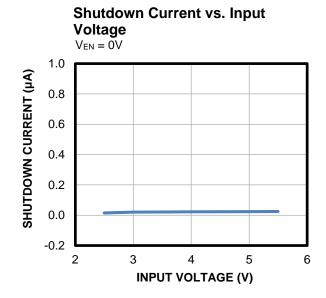


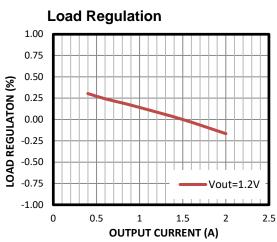
## **ELECTRICAL CHARACTERISTICS** (continued)

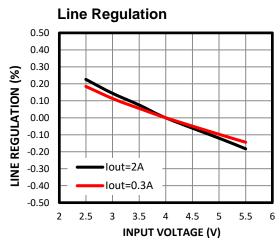
 $V_{IN}=3.6V$ ,  $T_J=-40^{\circ}C$  to  $+125^{\circ}C^{(9)}$ , typical value is tested at  $T_J=25^{\circ}C$ . The limit over temperature is guaranteed by characterization, unless otherwise noted.

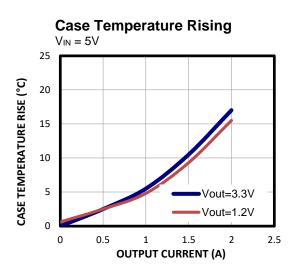
| Thermal shutdown (10)   |  | 160 | °C |
|-------------------------|--|-----|----|
| Thermal hysteresis (10) |  | 30  | °C |

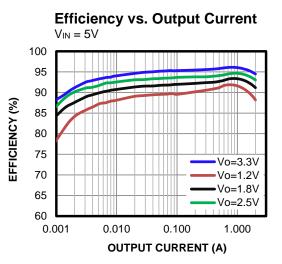

#### Notes:


- 9) Guaranteed by over-temperature correlation. Not tested in production.
- 10) Guaranteed by engineering sample characterization.





#### TYPICAL CHARACTERISTICS

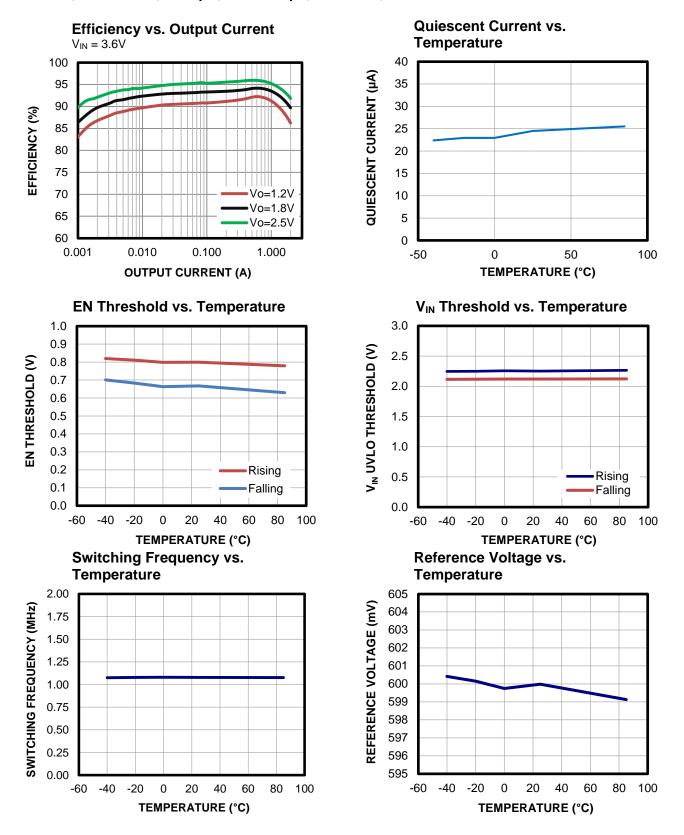

 $V_{IN} = 3.6V$ ,  $V_{OUT} = 1.2V$ ,  $L = 1\mu H$ ,  $C_{OUT} = 22\mu F$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.









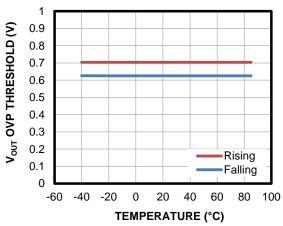





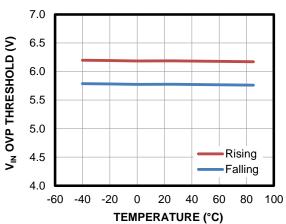



## TYPICAL CHARACTERISTICS (continued)

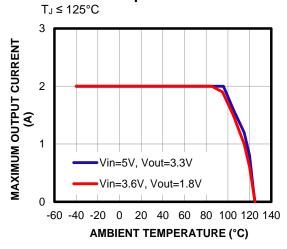
 $V_{IN} = 3.6V$ ,  $V_{OUT} = 1.2V$ ,  $L = 1\mu H$ ,  $C_{OUT} = 22\mu F$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.



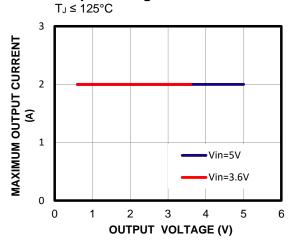




## TYPICAL CHARACTERISTICS (continued)

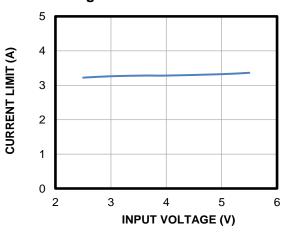
 $V_{IN}$  = 3.6V,  $V_{OUT}$  = 1.2V, L = 1 $\mu$ H,  $C_{OUT}$  = 22 $\mu$ F,  $T_A$  = 25°C, unless otherwise noted.



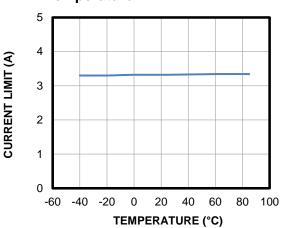




## V<sub>IN</sub> OVP Threshold vs. Temperature




#### Maximum Output Current vs. Ambient Temperature

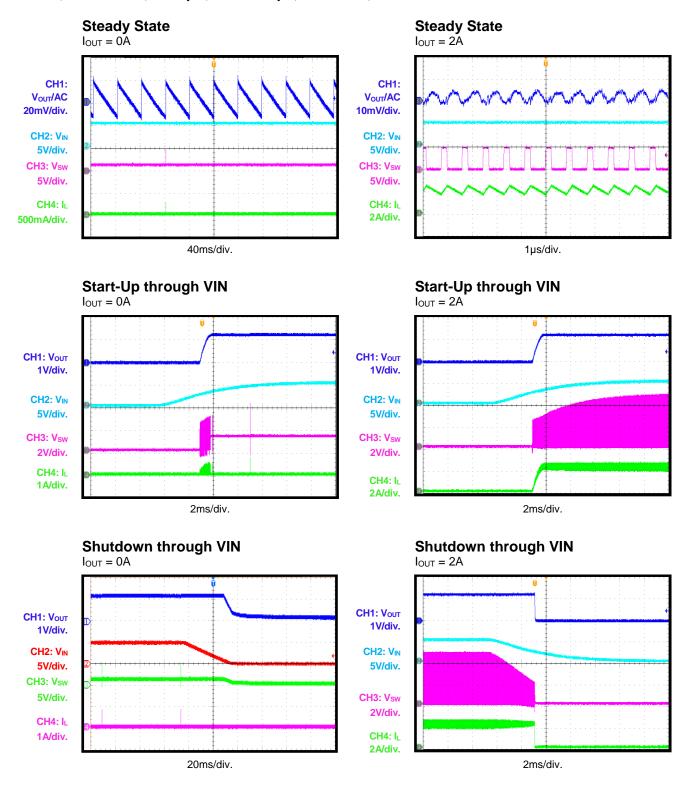



Output Current Derating vs. Output Voltage



# Peak Current Limit vs. Input Voltage

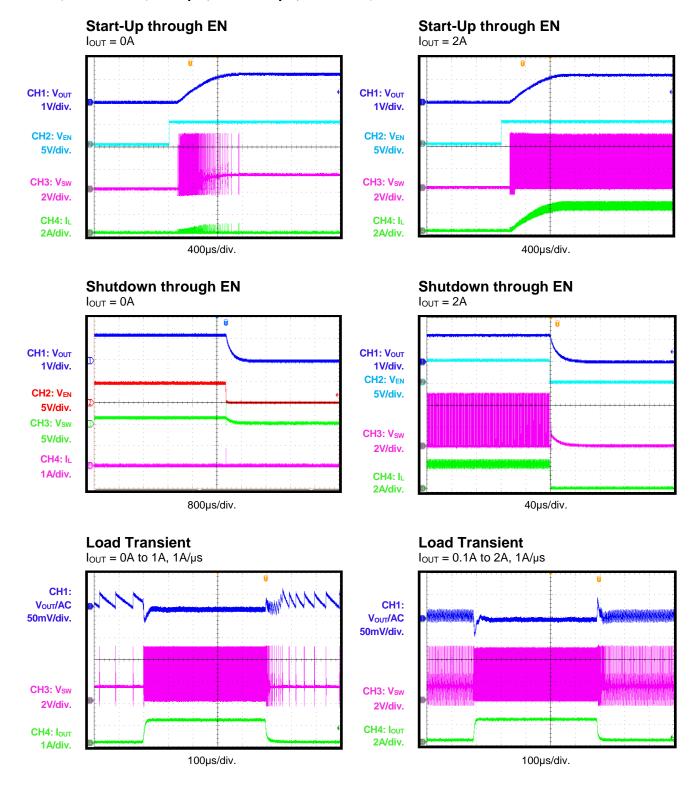



# Peak Current Limit vs. Temperature





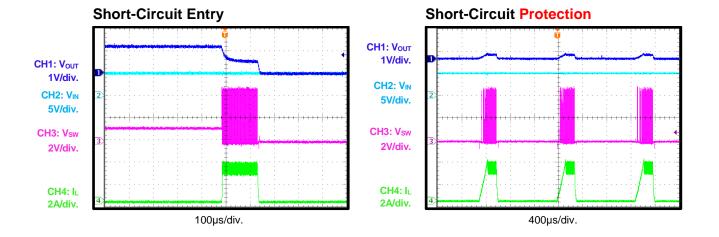
#### TYPICAL PERFORMANCE CHARACTERISTICS

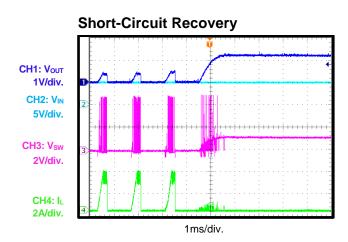

 $V_{IN} = 5V$ ,  $V_{OUT} = 1.2V$ ,  $L = 1\mu H$ ,  $C_{OUT} = 22\mu F$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.





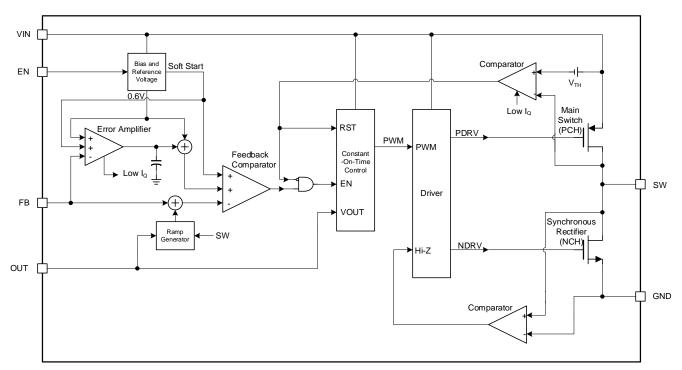
## TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 $V_{IN}$  = 5V,  $V_{OUT}$  = 1.2V, L = 1 $\mu$ H,  $C_{OUT}$  = 22 $\mu$ F,  $T_A$  = 25°C, unless otherwise noted.






## TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 $V_{IN}$  = 5V,  $V_{OUT}$  = 1.2V, L = 1 $\mu$ H,  $C_{OUT}$  = 22 $\mu$ F,  $T_A$  = 25°C, unless otherwise noted.







## **FUNCTIONAL BLOCK DIAGRAM**



**Figure 1: Functional Block Diagram** 

12



#### **OPERATION**

The MP2152D employs constant-on-time control (COT) and input voltage ( $V_{IN}$ ) feed-forward to stabilize the switching frequency ( $f_{SW}$ ) across the entire  $V_{IN}$  range. The device can achieve up to 2A of continuous output current ( $I_{OUT}$ ) across a wide 2.5V to 5.5V  $V_{IN}$  range, with excellent load and line regulation. The output voltage ( $V_{OUT}$ ) can be regulated to as low as 0.6V.

#### **Constant-On-Time (COT) Control**

Constant-on-time (COT) control offers a simpler control loop and fast transient response, compared to fixed-frequency pulse-width modulation (PWM) control. By using  $V_{\text{IN}}$  feed-forward, the MP2152D can maintain a fairly constant  $f_{\text{SW}}$  across the entire  $V_{\text{IN}}$  and  $V_{\text{OUT}}$  ranges. The switching pulse on time ( $t_{\text{ON}}$ ) can be estimated with Equation (1):

$$t_{ON} = \frac{V_{OUT}}{V_{IN}} \times 0.91 \mu s \tag{1}$$

The IC has a fixed minimum off time ( $t_{MIN\_OFF}$ ) (100ns) to prevent inductor current ( $I_L$ ) runaway during load transient.

#### Sleep Mode

The MP2152D employs sleep mode for high efficiency at extremely light loads. In sleep mode, most of the circuit blocks are turned off to reduce the input current to a minimum value (see Figure 2). The error amplifier (EA) and the PWM comparator remain on during sleep mode.

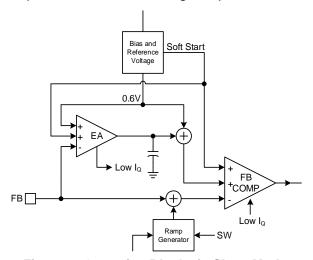



Figure 2: Operation Blocks in Sleep Mode

As the load decreases, the output voltage ripple  $(\Delta V_{OUT})$  increases and drives the EA output (EAO) low. If the EAO reaches its internal low threshold, then it clamps at this level and the device enters sleep mode. During sleep mode, the valley of the feedback (FB) voltage ( $V_{FB}$ ) is regulated to the internal reference voltage ( $V_{REF}$ ). This means that the average  $V_{OUT}$  is slightly exceeds the  $V_{OUT}$  in discontinuous conduction mode (DCM) or continuous conduction mode (CCM). The on-time pulse in sleep mode slightly exceeds that in DCM or CCM. Figure 3 shows the relationship between the average  $V_{FB}$  and  $V_{REF}$  in sleep mode.

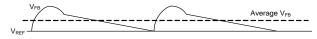



Figure 3: Average V<sub>FB</sub> in Sleep Mode

In sleep mode, the average  $V_{OUT}$  exceeds the internal  $V_{REF}$ . The EAO is clamped low. If the load increases, the PWM switching  $t_{ON}$  decreases to regulate  $V_{OUT}$ .  $\Delta V_{OUT}$  decreases relatively. Once the EAO exceeds its internal low threshold, the IC exits sleep mode and enters either DCM or CCM, depending on the load. In DCM or CCM, the EA regulates the average  $V_{OUT}$  to the internal  $V_{REF}$  (see Figure 4).



**Figure 4: Discontinuous Conduction Mode** 

Due to the EA's clamping response time, there is a loading hysteresis while entering or exiting sleep mode.

# Advanced Asynchronous Modulation (AAM) Mode under Light-Load Conditions

The MP2152D employs advanced asynchronous modulation (AAM) power-save mode together with zero current detection (ZCD) for light-load operation (see Figure 5).

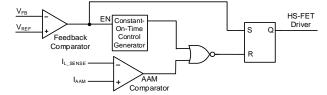



Figure 5: Simplified AAM Control Logic



The AAM current (I<sub>AAM</sub>) is set internally. The SW on-time pulse is determined by the on-timer generator and AAM comparator. If the AAM comparator pulse is longer than the on-timer generator pulse, then the part operates in AAM mode (see Figure 6).

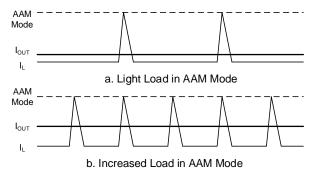



Figure 6: Simplified AAM Control Logic

If the AAM comparator pulse is shorter than the COT generator pulse, then the part operates in AAM mode (see Figure 7).

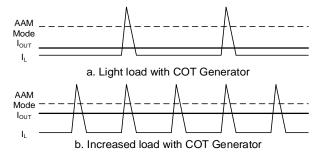



Figure 7: On-Time Control ton

Figure 8 shows that the AAM threshold decreases as  $t_{\text{ON}}$  increases gradually. In CCM,  $l_{\text{OUT}}$  should be at least half of the AAM threshold. Typically, the AAM threshold is below  $l_{\text{L}}$  during a normal duty cycle.

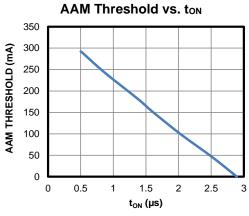



Figure 8: AAM Threshold Decreases as ton Increases

ZCD determines whether  $I_L$  has reversed. If  $I_L$  reaches the ZCD threshold, then the low-side MOSFET (LS-FET) turns off.

AAM mode and a ZCD circuit allow the MP2152D to operate in DCM at light loads, even if  $V_{\text{OUT}}$  is close to  $V_{\text{IN}}$ .

#### Enable (EN)

The enable (EN) pin enables and disables the MP2152D. Pull EN above 1.2V to turn the converter on; float EN or pull EN to GND to turn it off. If  $V_{\text{IN}}$  exceeds the under-voltage lockout (UVLO) threshold (typically 2.3V), then the part turns off. It can be turned on again once EN exceeds 1.2V. There is an internal  $1M\Omega$  resistor connected between the EN pin and GND.

If the MP2152D turns off, then the IC enters output discharge mode. Its internal discharge MOSFET provides a resistive discharge path for the output capacitor (C2).

#### Soft Start (SS)

The MP2152D has a built-in soft start (SS) that ramps up  $V_{\text{OUT}}$  at a controlled slew rate to avoid overshoot during start-up. The soft-start time (tss) is typically 1ms.

#### **Current Limit**

The MP2152D's HS-FET has a 4A maximum current limit ( $I_{\text{LIMIT}}$ ). If the HS-FET exceeds its current limit, then the MP2152D operates in hiccup mode until the current drops below 4A. This prevents  $I_{\text{L}}$  from rising and damaging components.

#### **Short Circuit Protection (SCP) and Recovery**

If  $I_{\text{LIMIT}}$  has been exceeded, then short-circuit protection (SCP) is triggered. SCP hiccup mode is used to recover from the over-current (OC) fault. In hiccup mode, the output power stage is disabled and the soft-start capacitor ( $C_{\text{SS}}$ ) is discharged, then the IC initiates an SS. If the short circuit remains once SS is complete, then the IC repeats the operation until the short circuit is removed and  $V_{\text{OUT}}$  rises to its regulation level.

#### **Output Over-Voltage Protection (OVP)**

The MP2152D monitors  $V_{FB}$  to detect overvoltage (OV) faults. If  $V_{FB}$  exceeds 115% of its target voltage, then the converter enters a dynamic regulation period. During this period, the LS-FET turns off once the LS-FET current



( $I_{LS\text{-}FET}$ ) drops to -1.5A. This discharges  $V_{OUT}$  to keep it within its normal range. If the OV condition remains, then the LS-FET turns on after a delay (1 $\mu$ s). The MP2152D exits this regulation period once the  $V_{FB}$  drops below 105% of  $V_{REF}$ .

If the dynamic regulation cannot limit the increasing  $V_{\text{OUT}}$  once  $V_{\text{IN}}$  exceeds 6.1V, then input over-voltage protection (OVP) is triggered. The MP2152D stops switching until  $V_{\text{IN}}$  drops below 5.7V. Once  $V_{\text{IN}}$  drops below 5.7V, then the IC resumes normal operation.



#### APPLICATION INFORMATION

#### **Setting the Output Voltage**

The external resistor divider sets  $V_{OUT}$  (see Figure 11 on page 17). Choose a FB resistor (R1) that reduces the  $V_{OUT}$  leakage current to between  $100k\Omega$  and  $200k\Omega$ . There is no strict requirement for the R1. The FB resistor (R2) can then be calculated with Equation (2):

$$R2 = \frac{R1}{\frac{V_{OUT}}{0.6} - 1}$$
 (2)

Where R1 is  $10k\Omega$ .

Figure 9 shows the feedback circuit.

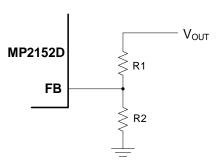



Figure 9: Feedback Network

Table 1 lists the recommended resistor values for common output voltages.

Table 1: Resistor Values for Common Output Voltages

| Vout (V) | R1 (kΩ)  | R2 (kΩ)   |
|----------|----------|-----------|
| 1        | 200 (1%) | 300 (1%)  |
| 1.2      | 200 (1%) | 200 (1%)  |
| 1.8      | 200 (1%) | 100 (1%)  |
| 2.5      | 200 (1%) | 63.2 (1%) |
| 3.3      | 200 (1%) | 44.2 (1%) |

#### Selecting the Inductor

Most applications work best with a 1-2.2 $\mu$ H inductor. Select an inductor with a DC resistance less than  $50m\Omega$  to optimize efficiency.

Select an inductor with a DC resistance below  $50m\Omega$  to improve efficiency. For most applications, a 1µH to 2.2µH inductor is sufficient.

A high-frequency, switch-mode power supply with a magnetic device has strong electromagnetic inference. Unshielded power inductors should not be used in application. It is recommended to use metal alloy or multi-layer chip shielded power inductors, as they can reduce the electromagnetic interference.

For most designs, the inductance  $(L_1)$  can be calculated with Equation (3):

$$L_{1} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_{I} \times f_{SW}}$$
(3)

Where  $\Delta I_L$  is the inductor ripple current.

Choose  $I_L$  to be approximately 30% of the maximum load current ( $I_{LOAD\_MAX}$ ). The maximum inductor peak current ( $I_{L\_PEAK\_MAX}$ ) can be calculated with Equation (4):

$$I_{L_{PEAK_{MAX}}} = I_{LOAD} + \frac{\Delta I_{L}}{2}$$
 (4)

MPS inductors are optimized and tested for use with our complete line of integrated circuits. Table 2 lists the recommended inductor.

**Table 2: Suggested Inductor** 

| Manufacturer P/N | Inductance | Manufacturer |
|------------------|------------|--------------|
| MPL-AL4020-1R0   | 1µH        | MPS          |

Visit MonolithicPower.com under Products > Inductors for more information.

#### Selecting the Input Capacitor (C1)

The step-down converter has a discontinuous input current ( $I_{IN}$ ), and requires a capacitor to supply AC current to the step-down converter while maintaining the DC  $V_{IN}$ . Use low ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are recommended due to their low ESR and small temperature coefficients. For most applications, a  $22\mu F$  capacitor is sufficient. Higher output voltages may require a  $44\mu F$  capacitor to increase system stability.

C1 requires an adequate ripple current rating to absorb the switching  $I_{IN}$ . The RMS current in C1 ( $I_{C1}$ ) can be estimated with Equation (5):

$$I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
 (5)



The worst case condition occurs at  $V_{IN} = 2V_{OUT}$ , which can be calculated with Equation (6):

$$I_{C1} = \frac{I_{LOAD}}{2} \tag{6}$$

For simplification, choose an input capacitor with an RMS current rating greater than half of  $I_{\text{LOAD\_MAX}}$ . C1 can be electrolytic, tantalum, or ceramic.

When using electrolytic or tantalum capacitors, add a small, high-quality, 0.1µF ceramic capacitor as close to the IC as possible.

When using ceramic capacitors, ensure that they have enough capacitance to provide a sufficient charge and prevent excessive voltage ripple at the input. The input voltage ripple ( $\Delta V_{IN}$ ) caused by the capacitance can be estimated with Equation (7):

$$\Delta V_{IN} = \frac{I_{LOAD}}{f_{SW} \times C1} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$
(7)

#### **Selecting the Output Capacitor (C2)**

The output capacitor (C2) stabilizes the DC  $V_{OUT}$ . Low ESR ceramic capacitors are recommended to limit  $\Delta V_{OUT}$ .  $\Delta V_{OUT}$  can be estimated with Equation (8):

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_{1}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times \left(R_{\text{ESR}} + \frac{1}{8 \times f_{\text{SW}} \times C2}\right)$$
(8)

Where  $R_{\text{ESR}}$  is the equivalent series resistance (ESR) of C2.

When using ceramic capacitors, the capacitance dominates the impedance at  $f_{SW}$  and causes most of  $\Delta V_{OUT}$ . For simplification,  $\Delta V_{OUT}$  can be estimated with Equation (9):

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{8 \times f_{\text{SW}}^2 \times L_4 \times C2} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \quad (9)$$

For tantalum or electrolytic capacitors, the ESR dominates the impedance at  $f_{SW}$ . For simplification,  $\Delta V_{OUT}$  can be estimated with Equation (10):

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{SW}} \times L_1} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times R_{\text{ESR}}$$
 (10)

The characteristics of C2 also affect the stability of the regulation system.

#### **PCB Layout Guidelines**

Efficient PCB layout is critical for stable operation. A poor layout design can result in poor line and load regulation, as well as stability issues. For the best results, refer to Figure 10 and follow the guidelines below:

- Place the high-current paths (GND, VIN, and SW) as close to the device as possible using short, direct, and wide traces.
- Place the input capacitor (C1) as close to VIN and GND as possible.
- 3. Place the external feedback resistors close to the FB pin.
- 4. Keep the switching node (SW) short and away from the feedback network.
- Keep the output voltage sense line as short as possible and away from the power inductor, especially the surrounding inductor.

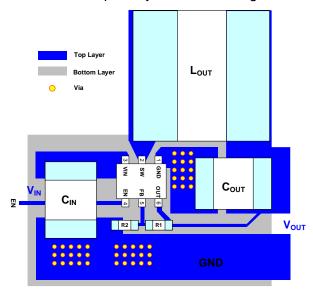
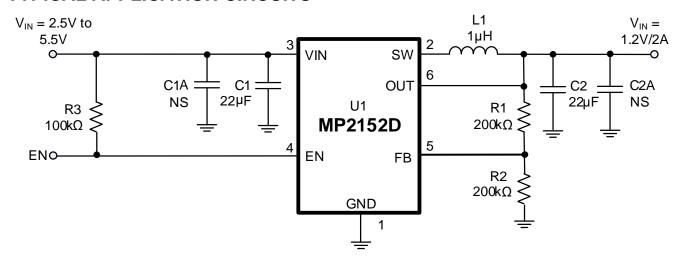



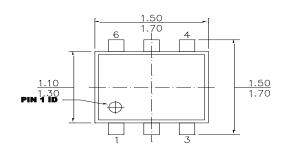

Figure 10: Recommended PCB Layout

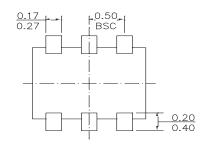


## **TYPICAL APPLICATION CIRCUITS**



**Figure 11: Typical Application Circuit** 


#### Note:


11) If V<sub>IN</sub> is below 3.3V, then the application circuit may require more input capacitors.



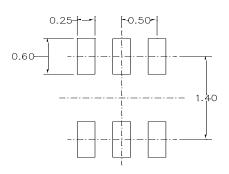
#### **PACKAGE INFORMATION**

#### **SOT563**





**TOP VIEW** 


**BOTTOM VIEW** 



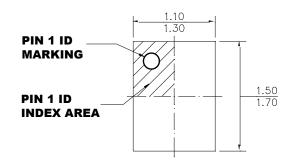


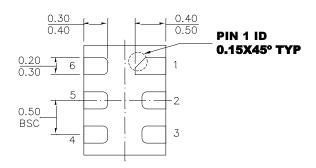
**FRONT VIEW** 

**SIDE VIEW** 



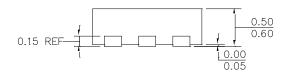
#### **NOTE:**


- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.

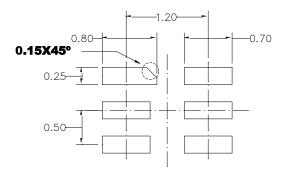

#### **RECOMMENDED LAND PATTERN**



## PACKAGE INFORMATION (continued)


**UTQFN-6 (1.2mmx1.6mm)** 





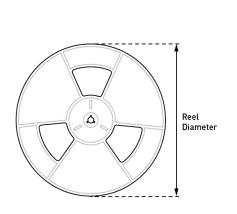

#### **TOP VIEW**

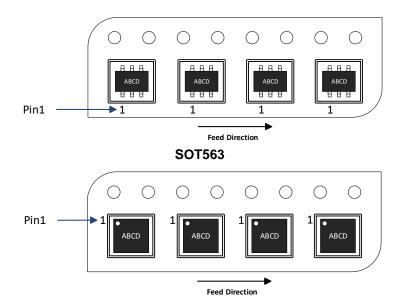
**BOTTOM VIEW** 



#### **SIDE VIEW**




### **NOTE:**


- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 3) JEDEC REFERENCE IS MO-220.
- 4) DRAWING IS NOT TO SCALE.

#### **RECOMMENDED LAND PATTERN**



## **CARRIER INFORMATION**





**UTQFN-6 (1.2mmx1.6mm)** 

| Part Number   | Package<br>Description   | Quantity/<br>Reel | Quantity/<br>Tube | Reel<br>Diameter | Carrier Tape<br>Width | Carrier Tape<br>Pitch |
|---------------|--------------------------|-------------------|-------------------|------------------|-----------------------|-----------------------|
| MP2152DGTF-Z  | SOT563                   | 5000              | N/A               | 7in              | 8mm                   | 4mm                   |
| MP2152DGQFU-Z | UTQFN-6<br>(1.2mmx1.6mm) | 5000              | N/A               | 13in             | 8mm                   | 4mm                   |

© 2021 MPS. All Rights Reserved.



## **REVISION HISTORY**

| Revision # | Revision<br>Date | Description     | Pages Updated |
|------------|------------------|-----------------|---------------|
| 1.0        | 11/18/2021       | Initial Release | -             |

**Notice:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.