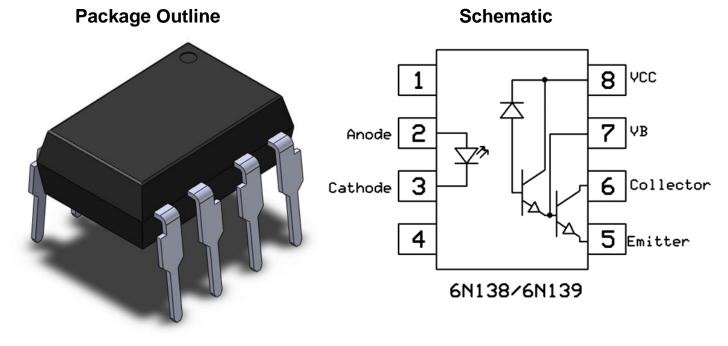


6N138, 6N139 Low Input Current Photodarlington Coupler

Features

- Low current 0.5mA
- Superior CTR-2000%
- CTR guaranteed 0-70°C
- MSL class 1
- **Regulatory Approvals**
 - ✓ UL - UL1577 (E364000)
 - ✓ VDE - EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898(14001104999) 1
 - \checkmark IEC62368 (FI/41119)

Applications


- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- μ P bus isolation
- Current loop receiver

Description

The 6N138 & 6N139 optocouplers consist of an AIGaAs LED optically coupled to a high gain split darlington photodetector.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements.

The devices are packaged in an 8-pin DIP package and also available in gullwing (400mil) spacing and surface mount lead forming option.

Note: Different lead forming options available. See package dimension.

6N138, 6N139 Low Input Current Photodarlington Coupler

Absolute Maximum Ratings $T_A = 25^{\circ}C$, unless otherwise specified

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Ratings	Units	Notes	
Viso	Isolation voltage (AC, 1 minute, 40 ~ 60% R.H.)	5000	V _{RMS}		
TOPR	Operating temperature		-55 ~ +100	°C	
Тѕтс	Storage temperature		-55 ~ +125	°C	
Tsol	Soldering temperature (For 10 seconds)		260	°C	
Emitter					
lF	Forward current		25	mA	
I _{FP}	Peak forward current (50% duty, 1ms P.W)		50	mA	
IF(TRANS)	Peak transient current (≤1µs P.W,300pps)	1	А		
VR	Reverse voltage	5	V		
Pc	Power dissipation	40	mW		
Detector	-				
PD	Power dissipation		100	mW	
V_{EBR}	Emitter-Base reverse voltage		0.5	V	
lo	Output Current	60	mA		
		6N138	-0.5 to 7	V	
Vo	Output voltage	6N139	-0.5 to 18	V	
		6N138	-0.5 to 7	V	
Vcc	Supply voltage	6N139	-0.5 to 18	V	

Electrical Characteristics $T_A = 0 - 70^{\circ}$ C, $V_{CC}=4.5V$ (unless otherwise specified).

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I⊧ = 16mA	-	1.45	1.6	V	
IR	Reverse Current	$V_R = 5V$	-	-	5	μA	
$\Delta V_F / \Delta T_A$	Temperature coefficient of forward voltage	I _F =16mA	-	-1.8	-	mV/°C	

Detector Characteristics

Symbol	Parameter	S	Test Conditions	Min	Тур	Max	Units	Notes
le	Logic High Output	6N139	IF=0mA, Vo=Vcc=18V,	-	0.008	80		
Іон	Current	6N138	TF=011A, V0=VCC=16V,	-	-	200	μA	
lcc∟	Logic Low Supply Curr	ent	I⊧=1.6mA, Vo=Open, Vcc=18V	-	0.5	1.4	mA	
І _{ССН}	Logic High Supply Cur	rent	I _F =0mA, V _O =Open, V _{CC} =18V	-	0.04	8	μΑ	

Transfer Characteristics

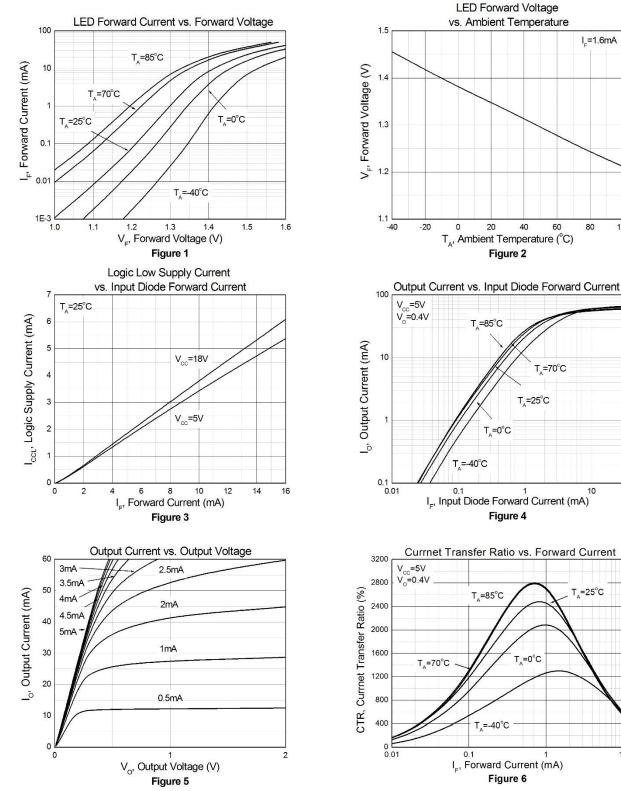
Symbol	Paramete	ers	Test Conditions	Min	Тур	Max	Units	Notes
			IF=0.5mA, Vo=0.4V,	400	2500	-		
CTR		6N138		300	2000	-	%	
	Ratio	6N139	− I _F =1.6mA, V ₀ =0.5V,	500	2000	-		
	Logic Low Output 6N139	I⊧= 0.5mA, I₀= 2mA	-	0.04	0.4			
		CN1420	IF= 1.6mA, Io= 8mA	-	0.08	0.4		
Vol		61139	I⊧= 5mA, I₀= 15mA	-	0.11	0.4	V	
			I⊧= 12mA, I₀= 24mA	-	0.16	0.4		
		6N138	I _F = 1.6mA, I _O = 4.8mA	-	0.05	0.4		

Electrical Characteristics $T_A = 0 - 70$ °C, $V_{cc} = 5V$ (unless otherwise specified).

Switching Characteristics

Symbol	Paramete	ers	Test Con	ditions	Min	Тур	Max	Units	Notes
			I _F = 0.5mA,		-	-	30		
		01400	R _L = 4.7kΩ	T _A = 25 ⁰ C	-	4.8	25		
Ŧ	High to Low	6N139	I⊧= 12mA,		-	-	2		
TPHL	Propagation Delay		RL= 250Ω	T _A = 25 ⁰ C	-	0.2	1	μs	
		01400	I _F = 1.6mA,		-	-	15		
		6N138	RL= 2.2kΩ	T _A = 25 ⁰ C	-	1.35	10		
Трін			I _F = 0.5mA,		-	-	90	- µs	
	Low to High	6N139	R _L = 4.7kΩ	T _A = 25 ⁰ C	-	15	60		
			I _F = 12mA,		-	-	10		
	Propagation Delay		RL= 250Ω	T _A = 25 ⁰ C	-	1.6	7		
		01400	I _F = 1.6mA,		-	-	50		
	6N138	6N138	RL= 2.2kΩ	T _A = 25 ⁰ C	-	7.6	35		
014	Common Mode Tran	mmon Mode Transient		= 10V _{P-P} ,	4 000				
СМн	Immunity at Logic Hi	gh	$T_A = 25^{\circ}C, R_L = 2$	2.2kΩ	1,000	-	-		
CM	Common Mode Transient		I _F = 1.6mA, VCN	/I = 10V _{P-P} ,	1 000			V/µs	
CM∟	Immunity at Logic Low		$T_A = 25^{\circ}C, R_L = 2$	2.2kΩ	1,000 -		-		

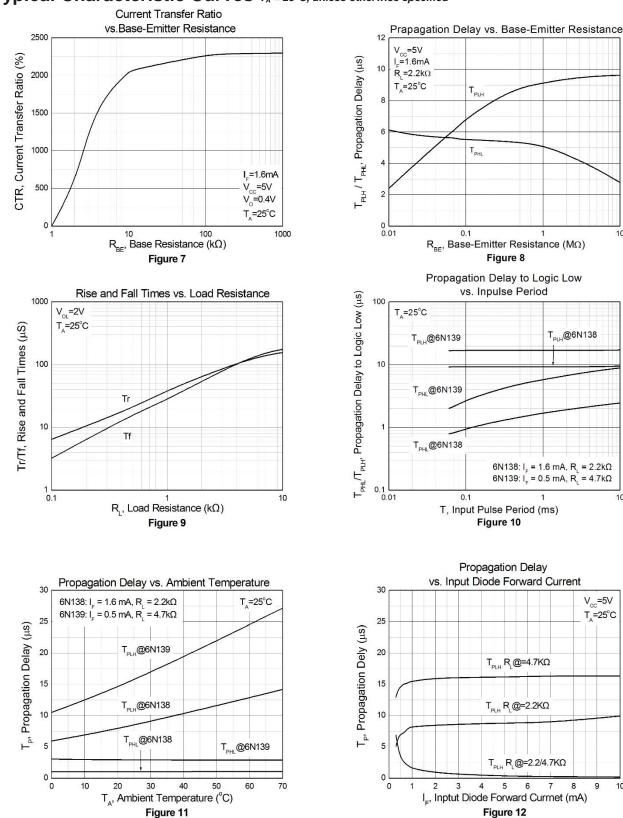
I_=1.6mA


80

10

T_=25°C

100


Typical Characteristic Curves T_A = 25°C, unless otherwise specified

10

Typical Characteristic Curves T_A = 25°C, unless otherwise specified

10

10

V_{cc}=5V

T.=25°C

6

8 9 10

1

T_{PLH}@6N138

6N138, 6N139 Low Input Current Photodarlington Coupler

Test Circuits

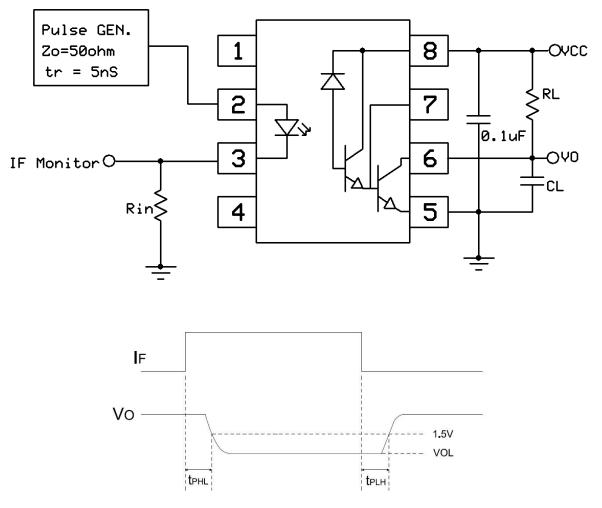
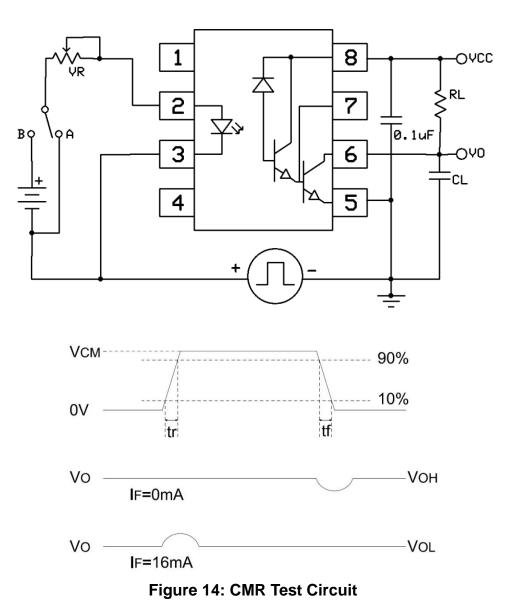
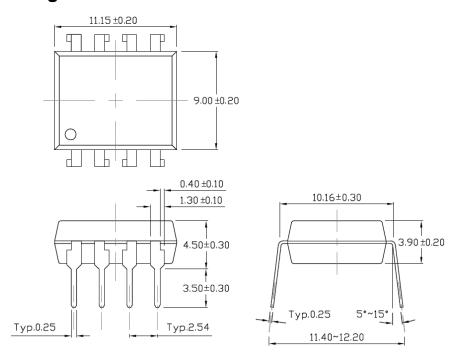
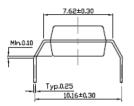



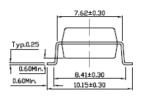
Figure 13: Switching Time Test Circuits

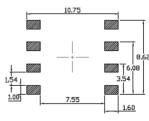

6N138, 6N139 Low Input Current Photodarlington Coupler

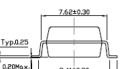
Test Circuits

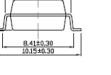


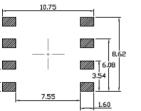
Package Dimension Dimensions in mm unless otherwise stated

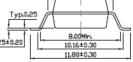


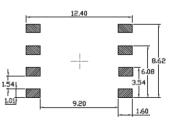

Package Dimension Dimensions in mm unless otherwise stated

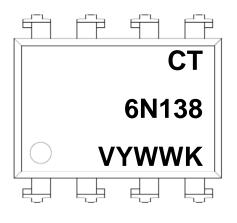

М Туре

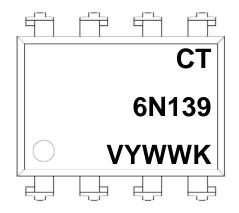

S Type






SL Type





6N138, 6N139 Low Input Current Photodarlington Coupler

Marking Information

Note:

- CT : Denotes "CT Micro"
- 6N138: Part Number
- V : VDE Safety Mark Option (Blank or V)
- Y : One Digit Year Code
- WW : Two Digit Work Week
- K : Manufacturing Code

Note:

- CT : Denotes "CT Micro"
- 6N139: Part Number
- V : VDE Safety Mark Option (Blank or V)
- Y : One Digit Year Code
- WW : Two Digit Work Week
- K : Manufacturing Code

Ordering Information

6N138	= Part	Number
-------	--------	--------

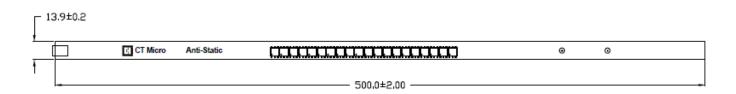
- V = VDE Safety Mark Option (Blank or V)
- Y = Lead Form Option (S, SL, M, SLM or none)
- Z = Tape and Reel Option (Blank, T1 or T2)

6N139(V)(Y)(Z)

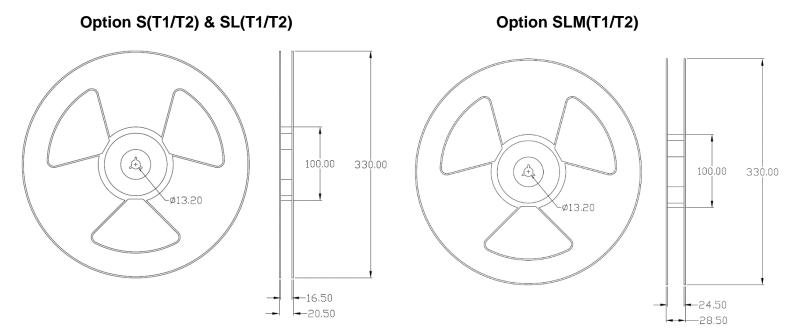
6N139 =	Part	Number
---------	------	--------

- V = VDE Safety Mark Option (Blank or V)
- Y = Lead Form Option (S, SL, M, SLM or none)
- Z = Tape and Reel Option (Blank, T1 or T2)

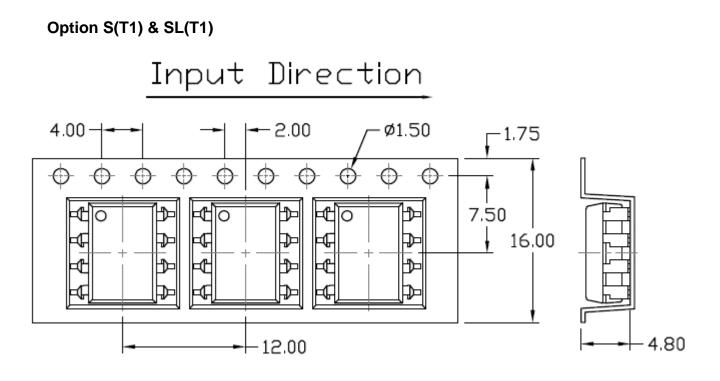
Option	Description	Quantity
None	Standard 8 Pin Dip	40 Units/Tube
М	Gullwing (400mil) Lead Forming	40 Units/Tube
S(T1)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	750 Units/Reel
S(T2)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	750 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	750 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming– With Option 2 Taping	750 Units/Reel
SLM(T1)	Surface Mount (Gullwing) Lead Forming– With Option 1 Taping	1000 Units/Reel
SLM(T2)	Surface Mount (Gullwing) Lead Forming – With Option 2 Taping	1000 Units/Reel



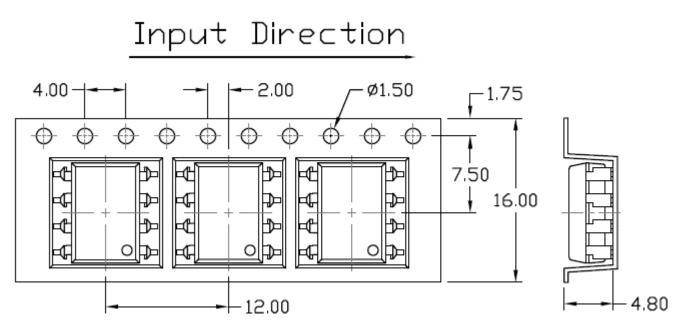
Carrier Specifications Dimensions in mm unless otherwise stated


Tube Option Standard DIP

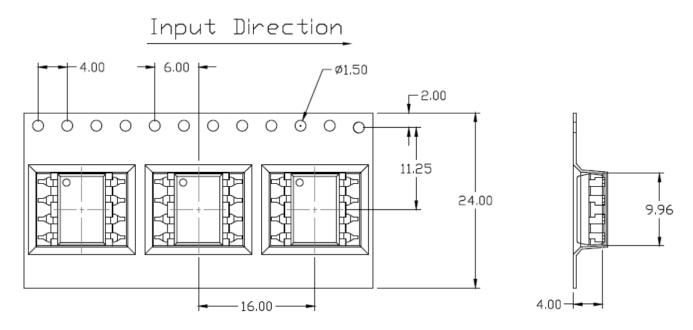
Tube Option M Type

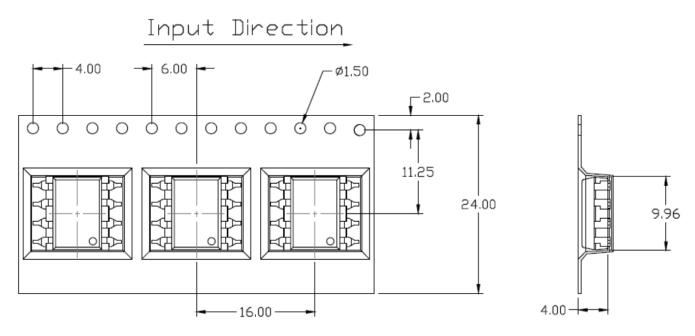


Reel Dimension All dimensions are in mm, unless otherwise stated



Carrier Tape Specifications Dimensions in mm unless otherwise stated


Option S(T2) & SL(T2)



Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option SLM(T1)

Option SLM(T2)

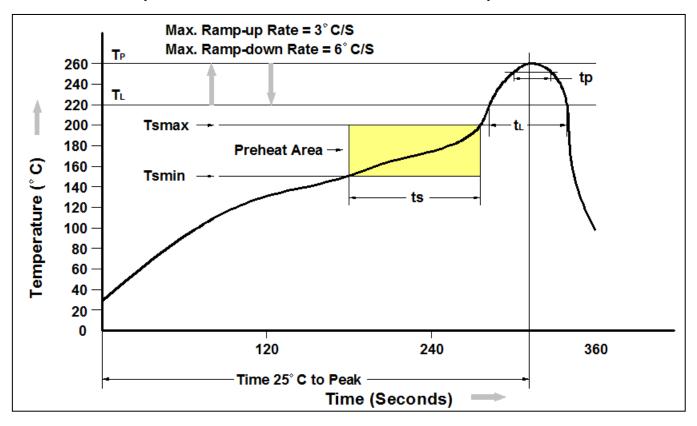
Solderability spec (Follow the JEDEC standard JESD22-B102)

Reflow Soldering: Immersed surface, other than the end of pin as cut-surface, must be covered by solder.

Solder-Bath: More than 95% of the electrode must be covered with solder.

Wave soldering (Follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature. Temperature: 260+0/-5°C. Time: 10 sec. Preheat temperature: 25 to 140°C. Preheat time: 30 to 80 sec.



Iron soldering (Follow the standard MIL-STD 202G, Method 210F)

Allow single lead soldering in every single process. One time soldering is recommended. Temperature: 350±10°C Time: 5 sec max.

Reflow Profile (Follow the JEDEC standard J-STD-020)

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (TL)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T_P to T_L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.