

Features

- 2.3V to 6.6V operating input voltage
- Up to 250mA output current capability
- Fixed output voltage range: 0.9V, 1.05V, 1.2V, 1.5V, 1.8V, 2.5V, 2.7V, 3.0V, 3.3V and 3.6V with $\pm 2\%$ accuracy
- Ultra low input consumption current: 1.35µA (typical)
- Stable with $1\mu F$ ceramic output capacitor
- · Fast output discharge to ground when shutdown
- · Soft-start function when powered on
- High PSRR: 75dB at 1kHz
- + Low output noise: $50 \mu V_{\text{RMS}}$ from 10Hz to 100kHz
- Over current and over temperature protection features
- Enable/disable function
- Package types: 4-pin DFN, 5-pin SOT23 and 3-pin SOT89

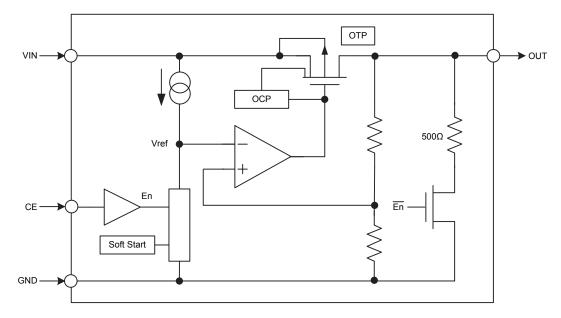
Applications

Selection Table

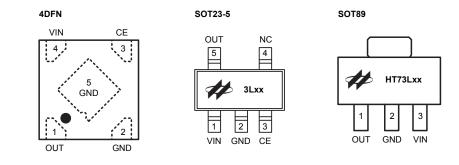
- IoT devices
- Smart/Health wearable devices

General Description

The HT73Lxx are a series of low dropout voltage regulators with an input voltage range from 2.3V to 6.6V. They are available in a range of fixed output voltages from 0.9V to 3.6V. When the CE pin input is low, a fast discharge path pulls the output voltage low via an internal pull-down resistor. An internal over-current protection circuit prevents the devices from damage even if their output was shorted to ground. An over-temperature protection circuit ensures the device junction temperature will not exceed a temperature of 150°C.


Due to the device's outstanding PSRR and low output noise performance features, they are suitable for use in powering RF applications such as sub-1GHz transceivers. Their ultra-small 4-pin DFN package type with their 0.4mm thickness makes the devices also suitable for space limited applications such as financial/credit cards or smart wearable products.

Part No.	Output Voltage	Package Type	Marking	
HT73L09	0.9V	4DFN xx for 4DFN type SOT23-5 3Lxx for SOT23-5 typ SOT89 HT73Lxx for SOT89 ty		
HT73L10	1.05V			
HT73L12	1.2V			
HT73L15	1.5V			
HT73L18	1.8V			
HT73L25	2.5V		HT73Lxx for SOT89 type	
HT73L27	2.7V			
HT73L30	3.0V			
HT73L33	3.3V			
HT73L36	3.6V			


Note: "xx" stands for output voltages

Block Diagram

Pin Assignment

Pin Description

	Pin No.		Pin Name	Din Decerintian	
4DFN	SOT23-5	SOT89	Pin Name	Pin Description	
1	5	1	OUT	Output pin	
2	2	2	GND	Ground pin	
3	3		CE	Chip enable pin, active high. This pin must not be allowed to float. It should be connected to VIN if not used	
4	1	3	VIN	Input pin	
	4		NC	Not connected	

Absolute Maximum Ratings

Parameter	Value	Unit	
VIN		-0.3 to +7.0	V
V _{CE}		-0.3 to (V _{IN} +0.3)	V
Operating Temperature Range, Ta		-40 to +85	°C
Maximum Junction Temperature, Tj,max		+150	°C
Storage Temperature Range		-65 to +165	°C
	4DFN	250	°C/W
Junction-to-Ambient Thermal Resistance, θ_{JA}	SOT23-5	500	°C/W
	SOT89	200	C/VV
	4DFN	0.5	W
Power Dissipation, P_D	SOT23-5	0.25	10/
	SOT89	0.625	W

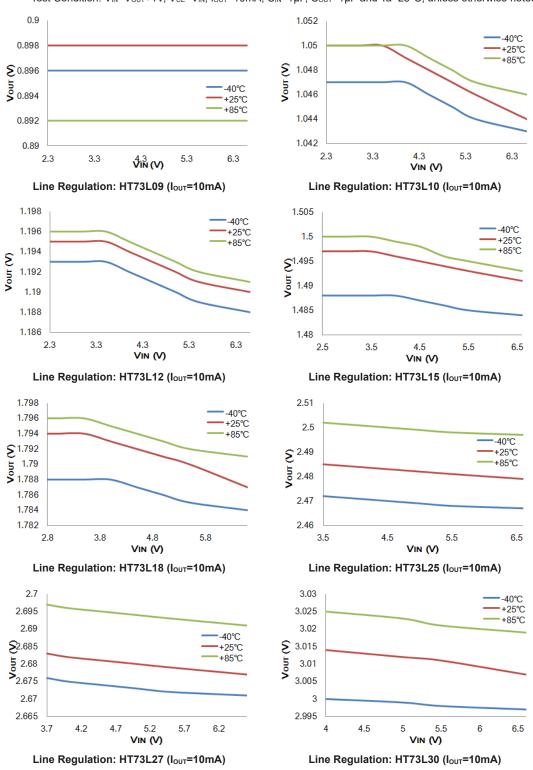
Note: P_D is measured at Ta=25°C

Recommended Operating Range

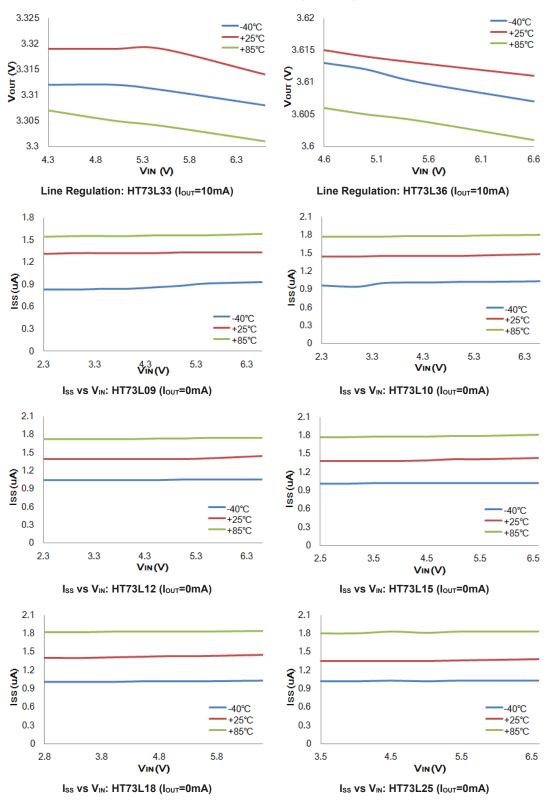
Parameter	Value	Unit
V _{IN}	2.3 to 6.6	V
V _{CE}	0 to V _{IN}	V

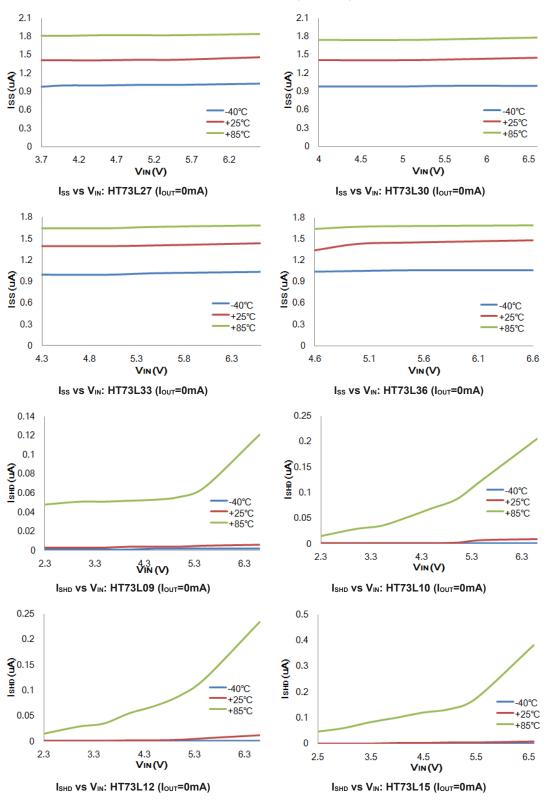
Electrical Characteristics

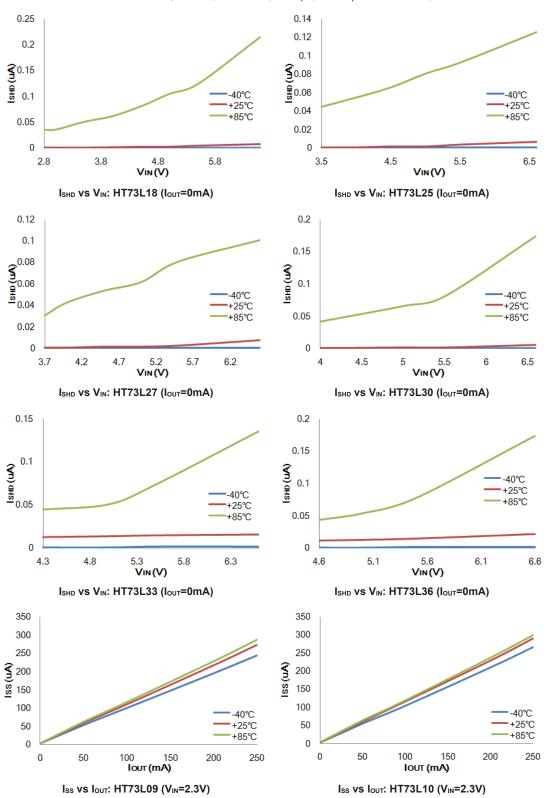
$V_{\rm IN} = (V_{\rm OUT} + 1V)$	$V_{CE} = V_{IN}$ $I_{OUT} = 10 \text{ mA}$, Ta=25°C and C _{IN} =C _{OUT} =1μF	unless otherwise specified
viiv (voor · i v),	, VCE VIN, IOUT IOTTI		, arness strictwise specified

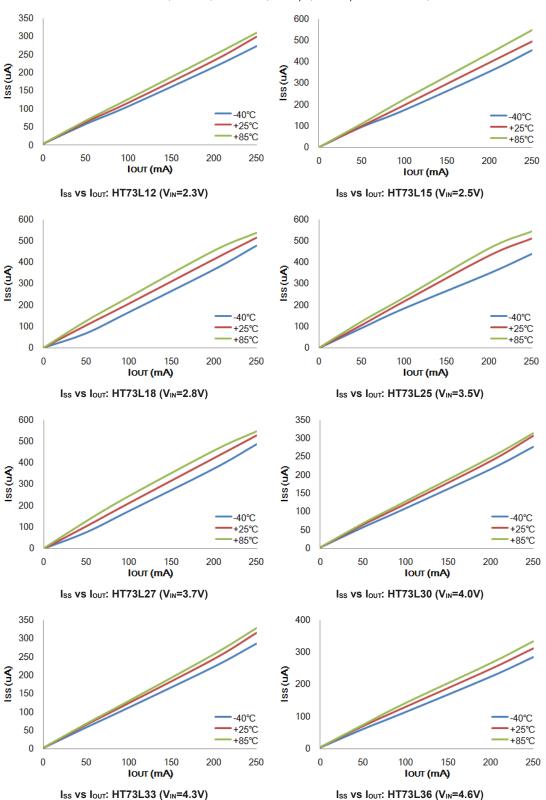

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
VIN	Input Voltage	_	2.3	—	6.6	V	
Vout	Output Voltage Range	_	0.9	_	3.6	V	
Vo	Output Voltage Accuracy	I _{out} =1mA	-2		2	%	
Іоит	Output Current	Vin≥2.3V	250	—	—	mA	
$\frac{\Delta V_{\text{OUT}}}{V_{\text{OUT}}}$	Load Regulation	1mA≤I _{ouт} ≤200mA	_	0.5	1.0	%	
		Vout<1.2V, Iout=50mA, Vout Change=2%	_	320	500		
		1.2V≤V _{OUT} <1.5V, I _{OUT} =50mA, V _{OUT} Change=2%	_	270	400		
		1.5V≤Vouт<1.8V, louт=50mA, Vour Change=2%	_	160	240		
V _{DIF}	Dropout Voltage (Note)	1.8V≤Vouт<2.5V, Iouт=50mA, Vou⊤Change=2%	_	120	180	mV	
		2.5V≤V _{OUT} <3.0V, I _{OUT} =50mA, V _{OUT} Change=2%	_	100	150		
		3.0V≤V _{OUT} , I _{OUT} =50mA, V _{OUT} Change=2%	_	75	130		
I _{SS}	Quiescent Current	V _{IN} =4.2V, I _{OUT} =0mA	_	1.35	2.50	μA	
I _{SHD}	Shutdown Current	V _{CE} =0V	_	0.01	0.10	μA	
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	(V _{out} +1V)≤V _{IN} ≤6.0V, I _{out} =10mA	_	0.02	0.10	%/V	
$\frac{\Delta V_{OUT}}{\Delta T_a \times V_{OUT}}$	Temperature Coefficient	I _{оυт} =10mA, -40°С<Та<85°С	_	±100	_	ppm/ °C	
IOCP	OCP Threshold	V _{IN} =(V _{OUT} +1V)	_	300	_	mA	
TOCP	OCP Debounce Time		_	5	—	us	
VIH	Enable High Threshold	CE pin, V _{IN} =6V	1.2		_	V	
VIL	Enable Low Threshold	CE pin, V _{IN} =6V	_	_	0.4	V	
R _{DIS}	Discharge Resistor	Force V _{IN} =6V, CE=0V and V _{OUT} =0.5V	_	500	_	Ω	
T _{SHD}	Shutdown Temperature	_	_	150	_	°C	
T _{REC}	Recovery Temperature		_	125	—	°C	
PSRR	Power Supply Rejection Ratio	Vout=3.3V, Iout=50mA, f=1kHz	_	75	_	dB	
Noise	Output Voltage Noise	Vout=3.3V, Iout=30mA, BW=10Hz to 100kHz	_	50	_	μV _{RMS}	

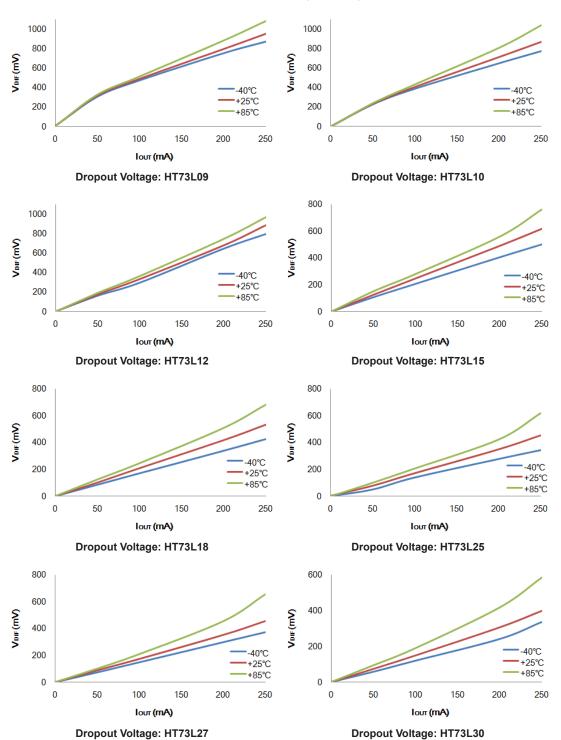
Note: The dropout voltage is defined as the input voltage minus the output voltage that produces a 2% change in the output voltage from the value at $V_{IN}=V_{OUT}+1V$ with a 50mA fixed load.

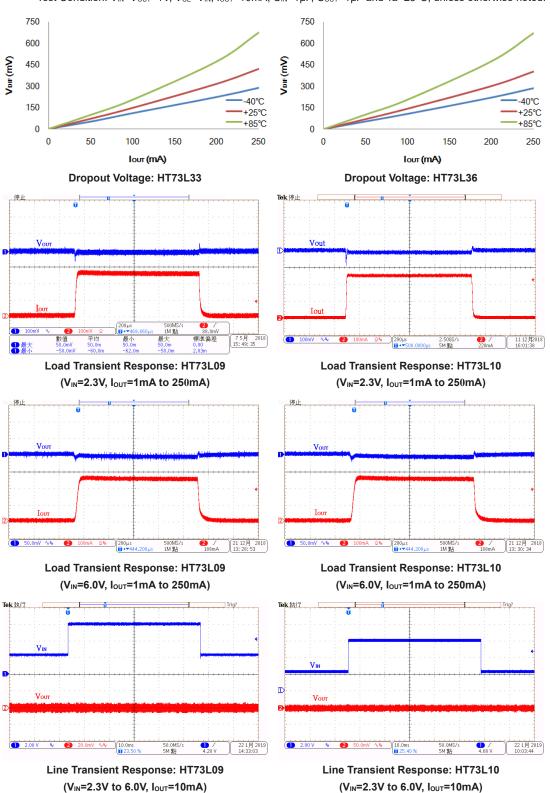

* The maximum operation voltage(6.6V) passes 125°C/1000-Hour HToL experiment.

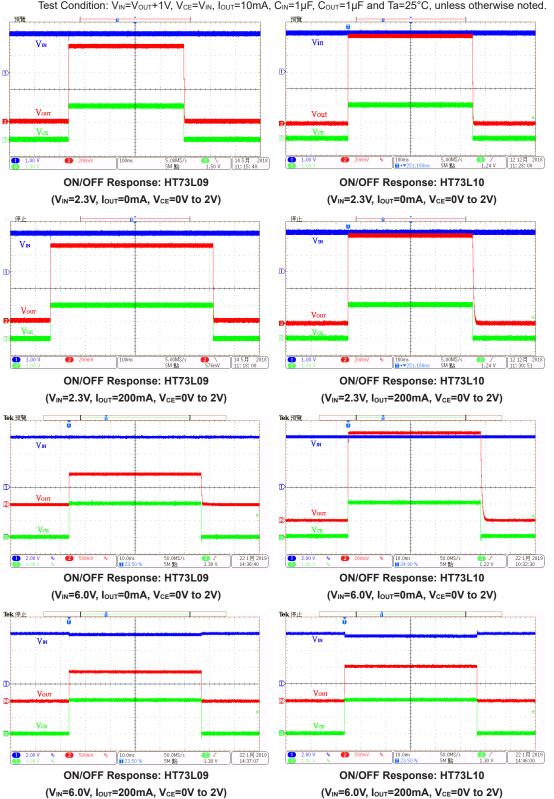

Typical Performance Characteristics

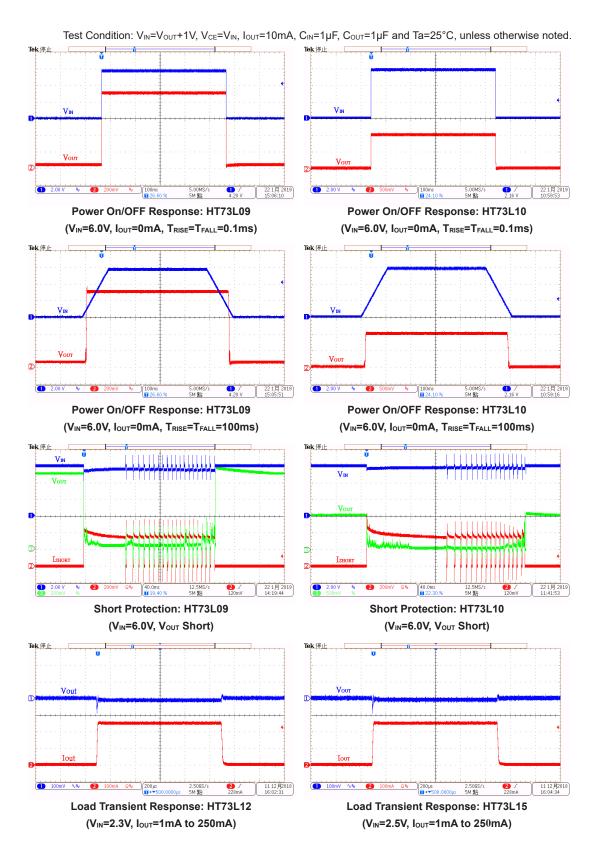




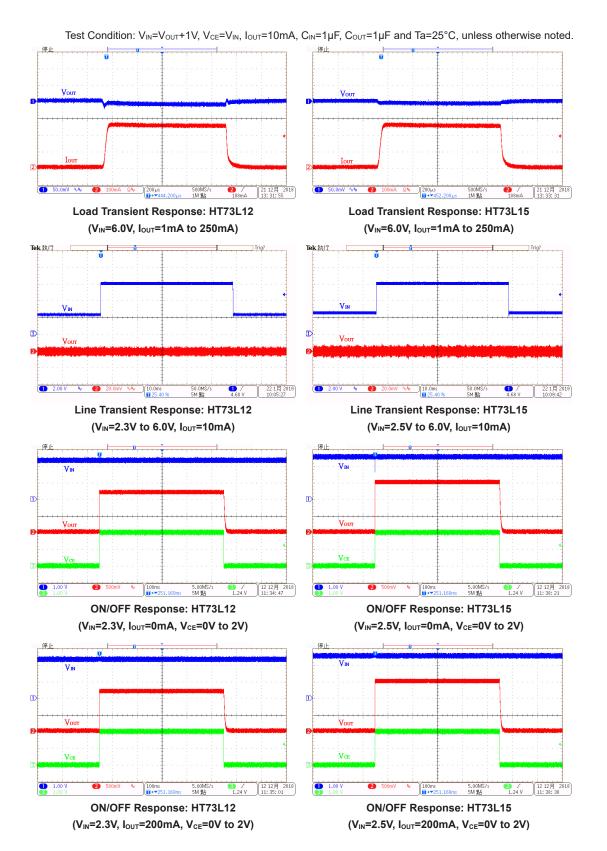

Test Condition: $V_{IN}=V_{OUT}+1V$, $V_{CE}=V_{IN}$, $I_{OUT}=10mA$, $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$ and $Ta=25^{\circ}C$, unless otherwise noted.


 $Test \ Condition: \ V_{IN} = V_{OUT} + 1V, \ V_{CE} = V_{IN}, \ I_{OUT} = 10 mA, \ C_{IN} = 1\mu F, \ C_{OUT} = 1\mu F \ and \ Ta = 25^{\circ}C, \ unless \ otherwise \ noted.$

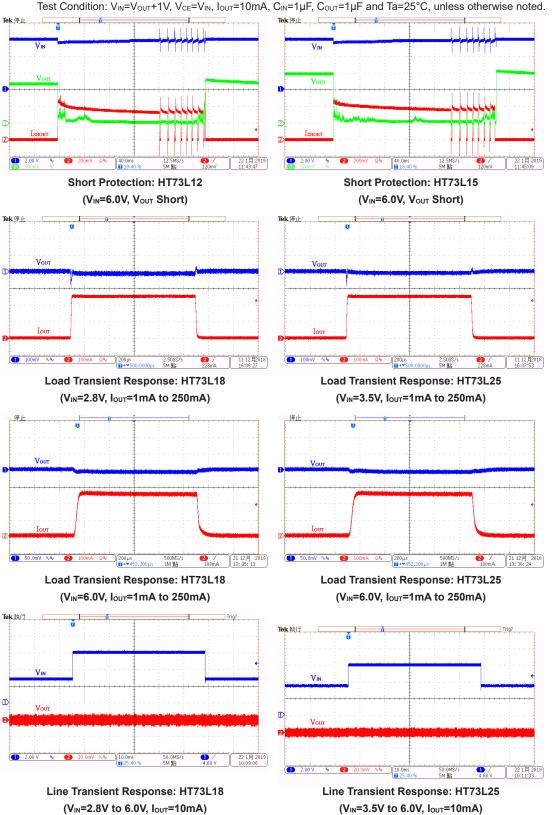

Test Condition: $V_{IN}=V_{OUT}+1V$, $V_{CE}=V_{IN}$, $I_{OUT}=10$ mA, $C_{IN}=1\mu$ F, $C_{OUT}=1\mu$ F and Ta=25°C, unless otherwise noted.

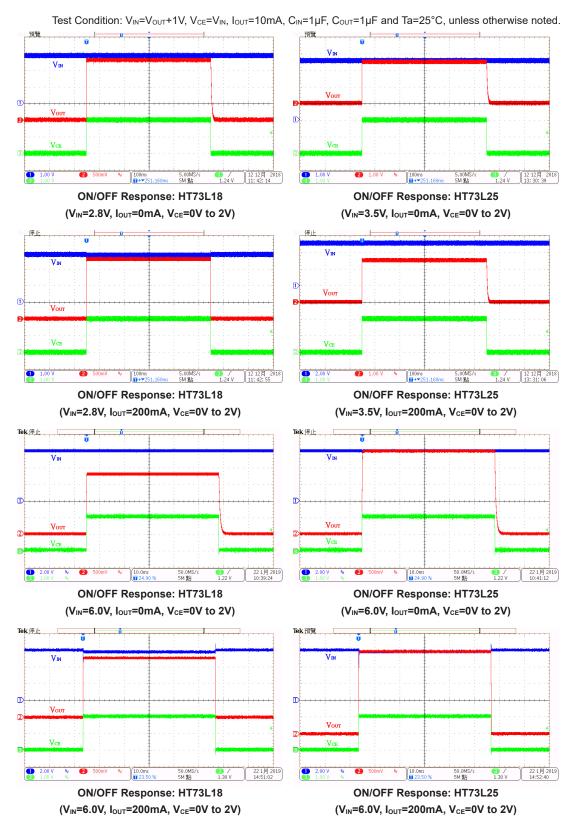


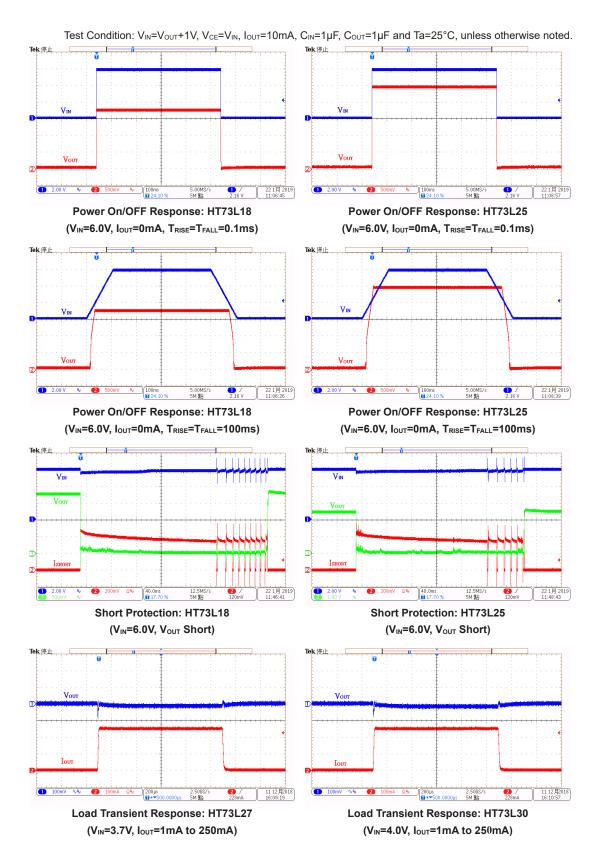
Test Condition: V_{IN}=V_{OUT}+1V, V_{CE}=V_{IN}, I_{OUT}=10mA, C_{IN}=1µF, C_{OUT}=1µF and Ta=25°C, unless otherwise noted.

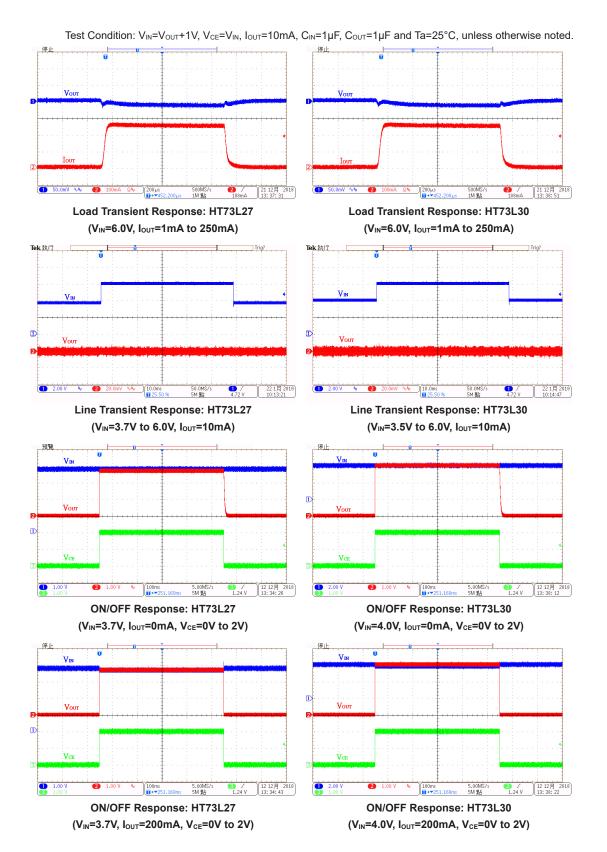




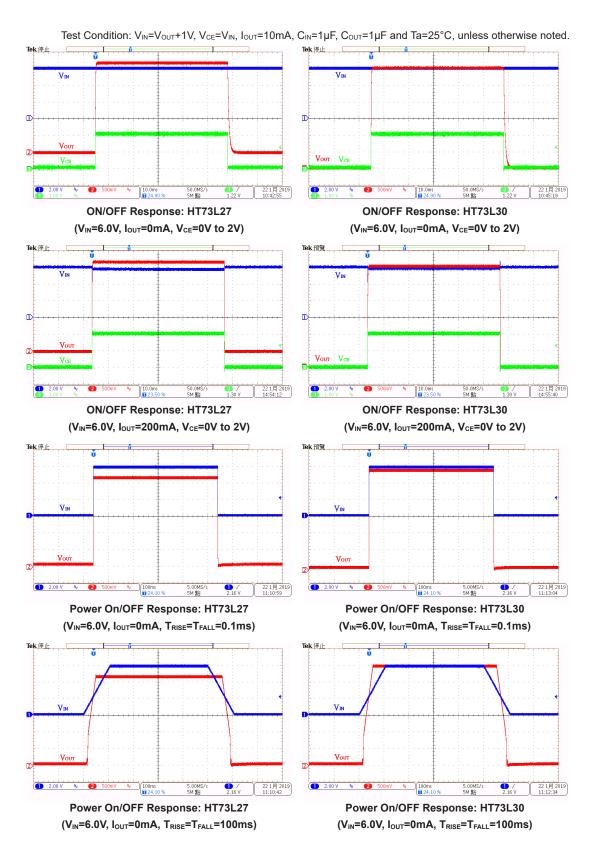


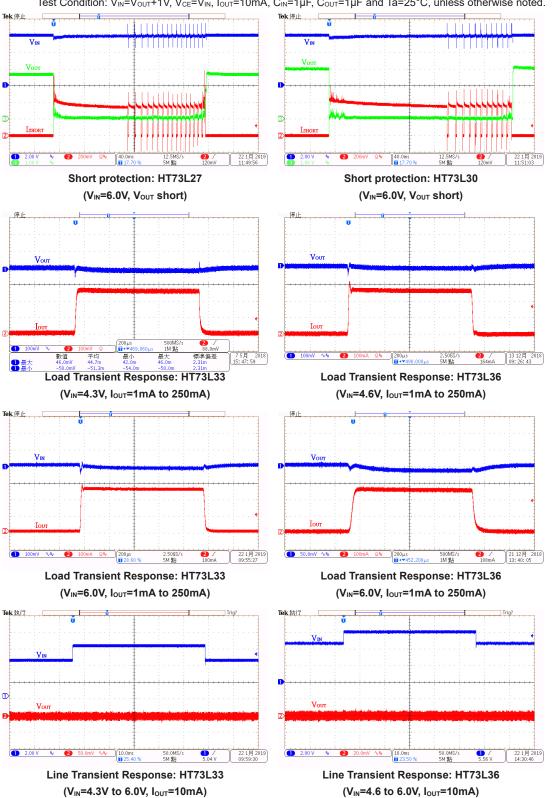


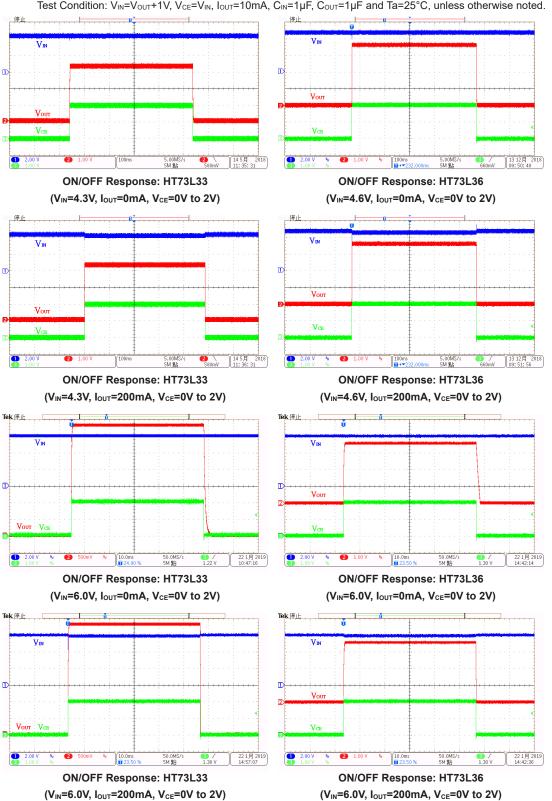


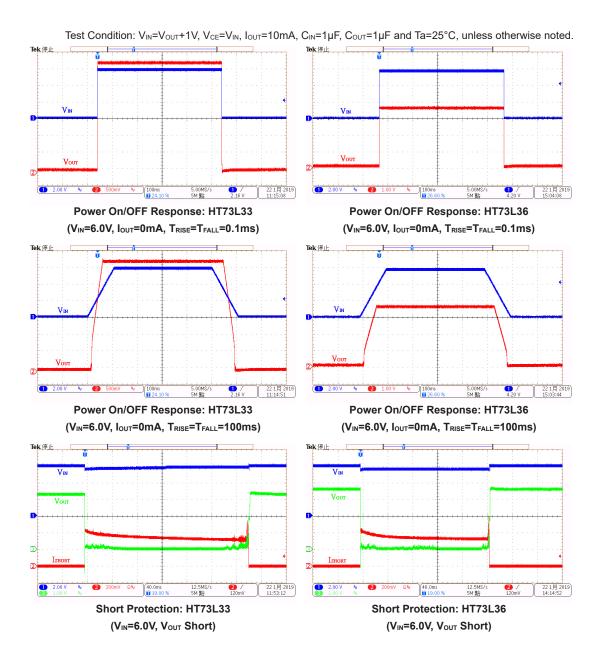

Rev. 1.30

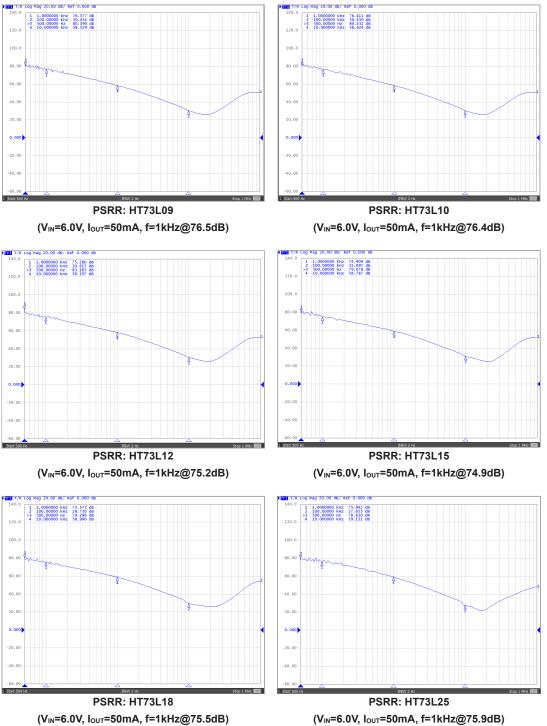
June 03, 2021

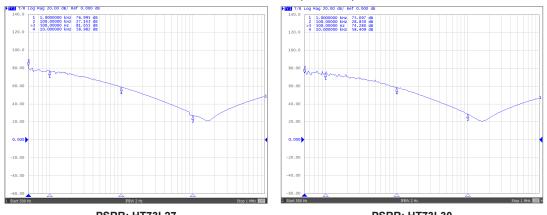


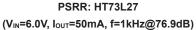












Test Condition: $V_{IN}=V_{OUT}+1V$, $V_{CE}=V_{IN}$, $I_{OUT}=10$ mA, $C_{IN}=1\mu$ F, $C_{OUT}=1\mu$ F and Ta=25°C, unless otherwise noted.

Test Condition: $V_{IN}=V_{OUT}+1V$, $V_{CE}=V_{IN}$, $I_{OUT}=10mA$, $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$ and $Ta=25^{\circ}C$, unless otherwise noted.

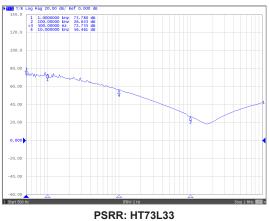
PSRR: HT73L30 (V_{IN}=6.0V, I_{OUT}=50mA, f=1kHz@75dB)

Ref 0.000 dr

1.0000000 kHz 72.051 d8 100.00000 kHz 24.796 d8 500.00000 Hz 72.321 d8 10.000000 kHz 54.259 d8

120.0

100.0 80.00


40.00

20.00

0.000

-20.00

-40.00

(V_{IN}=6.0V, I_{OUT}=50mA, f=1kHz@73.7dB)

PSRR: HT73L36 (Vi№=6.0V, louт=50mA, f=1kHz@72dB)

Application Information

When using the HT73Lxx regulators it is important that the following application points are noted to ensure correct operation.

OCP and OTP Protection Features

The HT73Lxx devices include over current protection and junction over temperature protection to prevent IC damage even if the output is shorted to ground. If the output is shorted to ground, the output current will be clamped to 300mA which will cause the junction temperature to rise. Once the junction temperature exceeds 150°C, the device power section will be shut down to prevent thermal damage. When the junction temperature falls to 125°C the protection function will be switched off and the device will resume normal operation.

Fast Output Discharge Function

When the CE pin is low the output voltage will be discharged rapidly to 0V via an internal 500Ω resistor. This discharge path will not appear when the OCP or OTP protection functions are active.

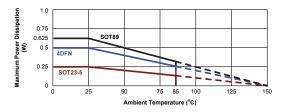
Input Capacitor C_{IN} Considerations

It is suggested that a value of at least 1μ F is chosen for the input capacitor. A ceramic type is recommended as they have better temperature coefficients and due to their lower ESR – Equivalent Series Resistance.

Output Capacitor Cout Considerations

The output capacitor plays an important role in keeping the output voltage stable. For ceramic types, an output capacitance value of at least 1μ F should be chosen. For E-cap types, a capacitance value of at least 2.2μ F should be chosen.

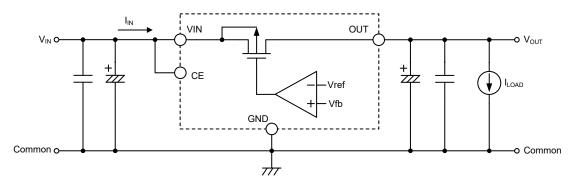
Thermal Considerations


The maximum power dissipation depends on the thermal resistance of the package, the PCB layout, the rate of the surrounding airflow and the difference between the junction and ambient temperature. The maximum power dissipation can be calculated using the following formula:

$$P_{D(MAX)} \!= \left(T_{J(MAX)} - T_a\right) / \theta_{JA}$$

where $T_{J(MAX)}$ is the maximum junction temperature, Ta is the ambient temperature and θ_{JA} is the junction-to-ambient thermal resistance of the IC package in degrees per watt. The following table shows the θ_{JA} values for various package types.

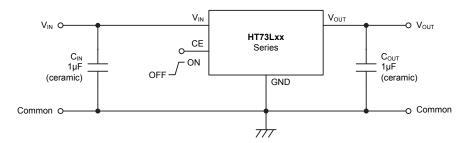
Package Type	θ _{JA} (°C/W)
4DFN	250 °C/W
SOT23-5	500 °C/W
SOT89	200 °C/W


For maximum operating rating conditions, the maximum junction temperature is 150°C. However, it is recommended that the maximum junction temperature does not exceed 125°C during normal operation to maintain an adequate margin for device reliability. The derating curves of different packages for maximum power dissipation are as follows:

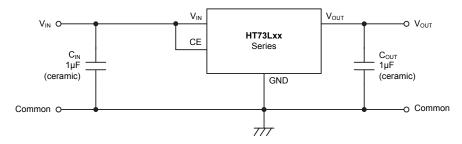
Power Dissipation Calculation

In order to keep the device within its operating limits and to maintain a regulated output voltage, the power dissipation of the device, given by P_D , must not exceed the Maximum Power Dissipation, given by $P_{D(MAX)}$. Therefore $P_D \leq P_{D(MAX)}$. From the diagram it can be seen that almost all of this power is generated across the pass transistor which is acting like a variable resistor in series with the load to keep the output voltage constant. This generated power which will appear as heat, must never allow the device to exceed its maximum junction temperature.

In practical applications the regulator may be called upon to provide both steady state and transient currents due to the transient nature of the load. Although the device may be working well within its limits with its steady state current, care must be taken with transient loads which may cause the current to rise close to its maximum current value. Care must be taken with transient loads and currents as this will result in device junction temperature rises which must not exceed the maximum junction temperature. With both steady state and transient currents, the important current to consider is the average or more precisely the RMS current which is the value of current that will appear as heat generated in the device. The following diagram shows how the average current relates to the transient currents.



As the quiescent current of the device is very small it can generally be ignored and as a result the input current can be assumed to be equal to the output current. Therefore the power dissipation of the device, P_D , can be calculated as the voltage drop across the input and output multiplied by the current, given by the equation, $P_D=(V_{IN}-V_{OUT})\times I_{IN}$. As the input current is also equal to the load current the power dissipation $P_D=(V_{IN}-V_{OUT})\times I_{LOAD}$. However, with transient load currents, $P_D=(V_{IN}-V_{OUT})\times I_{LOAD(AVG)}$ as shown in the figure.

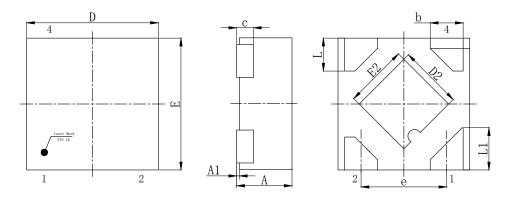


Application Circuits

With Enable Pin Control

Without Enable Pin Control

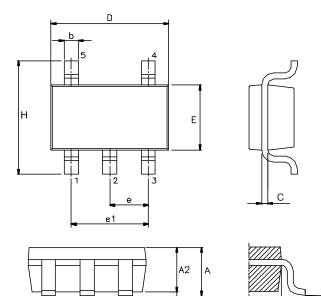
Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/</u> <u>Carton Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

4-pin DFN (1mm×1mm×0.4mm) Outline Dimensions

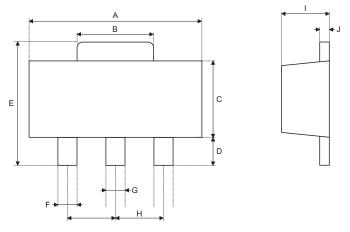


Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	0.014	—	0.016	
A1	0.000	0.001	0.002	
A3	—	—	—	
b	0.008	0.010	0.012	
D	0.037	0.039	0.041	
E	0.037	0.039	0.041	
е	_	0.026 BSC	_	
D2	0.015	0.019	0.023	
E2	0.015	0.019	0.023	
L	0.008	0.010	0.012	
L1	0.011	0.013	0.015	
К		—	—	

Symbol	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	0.35	—	0.40	
A1	0.00	0.02	0.05	
A3	—	—	—	
b	0.20	0.25	0.30	
D	0.95	1.00	1.05	
E	0.95	1.00	1.05	
e	—	0.65 BSC	—	
D2	0.38	0.48	0.58	
E2	0.38	0.48	0.58	
L	0.20	0.25	0.30	
K		_		

5-pin SOT23 Outline Dimensions

Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
А	_	_	0.057	
A1	_	_	0.006	
A2	0.035	0.045	0.051	
b	0.012	_	0.020	
С	0.003	_	0.009	
D	_	0.114 BSC	_	
E	_	0.063 BSC	_	
е	_	0.037 BSC	_	
e1	—	0.075 BSC	—	
Н	_	0.110 BSC	_	
L1	_	0.024 BSC	_	
θ	0°	_	8°	


A1

Cumb al	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	—	—	1.45	
A1	—	—	0.15	
A2	0.90	1.15	1.30	
b	0.30	—	0.50	
С	0.08	—	0.22	
D	_	2.90 BSC	—	
E	_	1.60 BSC	—	
е	—	0.95 BSC	—	
e1	_	1.90 BSC	—	
Н	—	2.80 BSC	—	
L1	_	0.60 BSC	_	
θ	0°	—	8°	

e

3-pin SOT89 Outline Dimensions

Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	0.173	_	0.185	
В	0.053	_	0.072	
С	0.090	_	0.106	
D	0.031	—	0.047	
E	0.155	_	0.173	
F	0.014	_	0.019	
G	0.017	—	0.022	
Н	—	0.059 BSC	—	
I	0.055	_	0.063	
J	0.014	—	0.017	

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	4.40	—	4.70
В	1.35	—	1.83
С	2.29	—	2.70
D	0.80	—	1.20
E	3.94	—	4.40
F	0.36	—	0.48
G	0.44	—	0.56
Н	—	1.50 BSC	_
I	1.40	_	1.60
J	0.35	—	0.44

Copyright[©] 2021 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.