

Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

HT69F3742/HT69F3742L

Revision: V1.10 Date: August 18, 2020

www.holtek.com

Table of Contents

Features	6
CPU Features	
Peripheral Features	6
General Description	7
Selection Table	7
Block Diagram	8
Pin Assignment	8
Pad Assignment – Dice Form	9
Pad Dimensions	9
Pad Coordinates – Dice Form	10
Pin Descriptions	10
Absolute Maximum Ratings	12
D.C. Characteristics	12
Operating Voltage Characteristics	12
Standby Current Characteristics	
Operating Current Characteristics	13
A.C. Characteristics	13
High Speed Internal Oscillator – HIRC – Frequency Accuracy	
Low Speed Internal Oscillator Characteristics – LIRC	
Operating Frequency Characteristic Curves	
System Start Up Time Characteristics	
Input/Output Characteristics	
Memory Characteristics	16
LVR/LVD Electrical Characteristics	16
LCD Electrical Characteristics	17
Power Switch Characteristics	17
Power on Reset Electrical Characteristics	17
System Architecture	18
Clocking and Pipelining	
Program Counter	19
Stack	19
Arithmetic and Logic Unit – ALU	20
Flash Program Memory	21
Structure	
Special Vectors	
Look-up Table	
Table Program Example	
In Circuit Programming – ICP	
On-Chip Debug Support – OCDS	23

RAM Data Memory	24
Structure	
General Purpose Data Memory	24
Special Purpose Data Memory	25
Special Function Register Description	26
Indirect Addressing Registers – IAR0, IAR1	
Memory Pointers – MP0, MP1	26
Bank Pointer – BP	27
Accumulator – ACC	27
Program Counter Low Register – PCL	27
Look-up Table Registers – TBLP, TBHP, TBLH	
Status Register – STATUS	28
EEPROM Data Memory	29
EEPROM Data Memory Structure	29
EEPROM Registers	29
Reading Data from the EEPROM	31
Writing Data to the EEPROM	
Write Protection	
EEPROM Interrupt	
Programming Considerations	32
Oscillators	
Oscillator Overview	
System Clock Configurations	
Internal High Speed RC Oscillator – HIRC	
Internal 32kHz Oscillator – LIRC	34
Operating Modes and System Clocks	
System Clocks	
System Operation Modes	
Control Registers	
Operating Mode Switching	
Standby Current Considerations	
Wake-up	
Watchdog Timer	
Watchdog Timer Clock Source	
Watchdog Timer Control Register	
Watchdog Timer Operation	43
Reset and Initialisation	44
Reset Functions	
Reset Initial Conditions	49
Input/Output Ports	51
Pull-high Resistors	51
Port A Wake-up	52
I/O Port Control Registers	
Pin-shared Function	53

	55
Programming Considerations	55
Timer Modules – TM	56
Introduction	
TM Operation	56
TM Clock Source	56
TM Interrupts	56
TM External Pins	57
Programming Considerations	57
Standard Type TM – STM	58
Standard Type TM Operation	59
Standard Type TM Register Description	59
Standard Type TM Operation Modes	63
LCD Driver	73
LCD Display Memory	
LCD Clock Source	74
C Type LCD Pump Clock Source	74
LCD Registers	74
LCD Voltage Source and Biasing	76
LCD Reset Function	77
LCD Driver Output	77
Programming Considerations	81
Power Switch	82
Power Switch Function Registers	
Low Voltage Detector – LVD	84
LVD Register	
LVD Operation	
Interrupts	85
Interrupt Registers	
. •	
Interrupt Operation	88
. •	
Interrupt Operation External Interrupts Timer Module Interrupts	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt.	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt.	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt LVD Interrupt	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt LVD Interrupt Interrupt Wake-up Function	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt LVD Interrupt Interrupt Wake-up Function Programming Considerations Configuration Options	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt LVD Interrupt Interrupt Wake-up Function Programming Considerations Configuration Options Application Circuits	
Interrupt Operation External Interrupts Timer Module Interrupts Time Base Interrupt EEPROM Interrupt FDI Interrupt LVD Interrupt Interrupt Wake-up Function Programming Considerations Configuration Options	

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

Moving and Transferring Data	94
Arithmetic Operations	94
Logical and Rotate Operation	95
Branches and Control Transfer	95
Bit Operations	95
Table Read Operations	
Other Operations	95
Instruction Set Summary	96
Table Conventions	
Instruction Definition	98
Package Information	107
SAW Type 46-pin QFN (6.5×4.5×0.75mm) Outline Dimensions	

Features

CPU Features

- · Operating Voltage
 - f_{SYS}=2MHz: 1.8V~5.5V
 f_{SYS}=4MHz: 1.8V~5.5V
 - f_{SYS}=8MHz: 2.2V~5.5V
 - f_{SYS}=8MHz: 2.2V~5.5V
 f_{SYS}=32kHz: 1.2V~5.5V for HT69F3742L
 - f_{SYS}=32kHz: 1.8V~5.5V for HT69F3742
- Up to 0.5µs instruction cycle with 8MHz system clock
- Power down and wake-up functions to reduce power consumption
- Multi-mode operation: FAST, SLOW, IDLE and SLEEP
- · Fully integrated internal oscillators require no external components
- All instructions executed in one or two instruction cycles
- Table read instructions
- 61 powerful instructions
- 4-level subroutine nesting
- · Bit manipulation instruction

Peripheral Features

- Flash Program Memory: 4K×16
- RAM Data Memory: 128×8
- True EEPROM Memory: 128×8
- · Watchdog Timer function
- 9 bidirectional I/O lines
- Two pin-shared external interrupts
- Single Timer Module for time measurement, capture input, compare match output, PWM output or single pulse output function
- Single Time Base function for generation of fixed time interrupt signals
- · LCD driver function
 - SEGs×COMs: 24×3 or 23×4
 - Duty type: 1/3 duty or 1/4 duty
 - Bias level: 1/2 bias
 - Bias type: C type
 - Waveform type: type A or type B
- · Power Switch function
- · Low voltage detect function
- Low voltage reset function for HT69F3742 only
- Package types: Dice Form & 46-pin QFN

Rev. 1.10 6 August 18, 2020

General Description

The deivces are a Flash Memory type 8-bit high performance RISC architecture microcontroller specially designed for ultra-low voltage especially one battery applications.

For memory features, the Flash Memory offers users the convenience of multi-programming features. Other memory includes an area of RAM Data Memory as well as an area of true EEPROM memory for storage of non-volatile data such as serial numbers, calibration data etc.

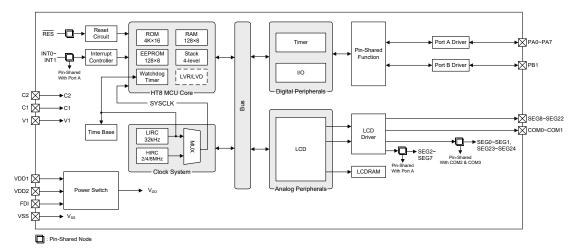
Single Timer Module provides timing, pulse generation and PWM generation functions. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical environments.

The devices also include fully integrated high and low speed oscillators which require no external components for their implementation. The ability to operate and switch dynamically between a range of operating modes using different clock sources gives users the ability to optimise microcontroller operation and minimise power consumption.

These devices provide a power switch function, which is used to switch the V_{DD1} or V_{DD2} voltage as MCU power supply V_{DD} , where the V_{DD1} can be battery or solar output, while the V_{DD2} may be NFC Havesting energy output. The inclusion of flexible I/O programming features, Time Base function, LCD driver function along with many other features ensure that the devices will find excellent use in applications such as solar energy storage display card and so on.

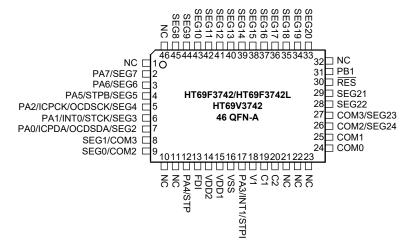
Selection Table

Most features are common to these devices, the main features distinguishing them are Low voltage reset function. The following table summarises the main features of each device.


Part No.	V _{DD}	Program Memory	Data Memory	Data EEPROM	I/O	External Interrupt	
HT69F3742	1.8V~5.5V	4K×16	128×8	128×8	0	2	
HT69F3742L	1.2V~5.5V	41.410	120*0	120*0	9	2	

Part No.	Timer Module	Time Base	LCD Driver	LVR	LVD	Power Switch	Stack	Package
HT69F3742	1	1	24×3 or	√	2/	2/	4	Dice Form
HT69F3742L	l	ı	23×4	_	\ \ \	V	4	46QFN

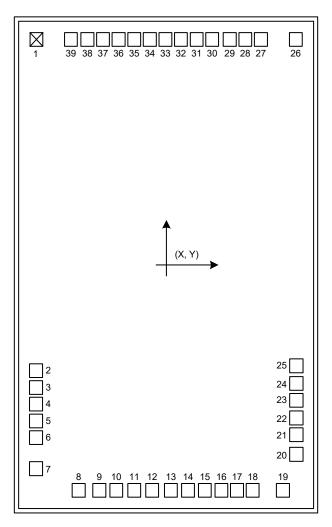
Rev. 1.10 7 August 18, 2020



Block Diagram

Note: The LVR function only exists in the HT69F3742 device.

Pin Assignment



- Note: 1. If the pin-shared pin functions have multiple output functions, the desired pin-shared function is determined using corresponding pin-shared software control bits.
 - 2. The OCDSDA and OCDSCK pins are supplied as OCDS dedicated pins and as such only available for the HT69V3742 device which is the OCDS EV chip for the HT69F3742/HT69F3742L devices.

Rev. 1.10 8 August 18, 2020

Pad Assignment - Dice Form

Pad Dimensions

lt a ma	Si	I I mit		
Item	X Y		Unit	
Chip size	1435	2204	μm	
Chip thickness	1:	152		
Pad pitch	7	μm		
Pad window	6	μm		

Pad Coordinates - Dice Form

Unit: µm

Pad No.	Pad Name	Х	Υ	Pad No.	Pad Name	Х	Υ
1	PA7	-624.600	1012.500	21	COM2/SEG24	628.000	-762.590
2	PA6	-628.000	-474.830	22	COM3/SEG23	628.000	-687.590
3	PA5	-628.000	-549.830	23	SEG22	628.000	-606.990
4	PA2	-628.000	-624.830	24	SEG21	628.000	-531.990
5	PA1	-628.000	-699.830	25	RESB	628.000	-452.590
6	PA0	-628.000	-774.830	26	PB1	624.600	1012.500
7	COM3/SEG1	-628.000	-914.750	27	SEG20	457.210	1012.500
8	COM2/SEG0	-421.133	-1012.500	28	SEG19	382.210	1012.500
9	PA4	-321.130	-1012.500	29	SEG18	307.210	1012.500
10	FDI	-239.620	-1012.500	30	SEG17	221.210	1012.500
11	VDD2	-153.620	-1012.500	31	SEG16	146.210	1012.500
12	VDD1	-67.620	-1012.500	32	SEG15	71.210	1012.500
13	VSS	23.880	-1012.500	33	SEG14	-3.790	1012.500
14	VSS	105.660	-1012.500	34	SEG13	-78.790	1012.500
15	PA3	187.480	-1012.500	35	SEG12	-153.790	1012.500
16	V1	266.280	-1012.500	36	SEG11	-228.790	1012.500
17	C1	341.280	-1012.500	37	SEG10	-303.790	1012.500
18	C2	416.280	-1012.500	38	SEG9	-378.790	1012.500
19	COM0	563.000	-1012.500	39	SEG8	-459.400	1012.500
20	COM1	628.000	-850.730				

Pin Descriptions

The function of each pin is listed in the following table, however the details behind how each pin is configured is contained in other sections of the datasheet. Note that the pin description refers to the largest package size, as a result some pins may not exist on smaller package types.

Pin Name	Function	OPT	I/T	O/T	Description
PA0/ICPDA/	PA0	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
OCDSDA/SEG2	ICPDA	_	ST	CMOS	In-circuit programming data/address pin
	OCDSDA	_	ST	CMOS	On-chip debug support data/address pin, for EV chip only
	SEG2	PAS0	_	SEG	LCD segment output
PA1/INT0/STCK/	PA1	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
SEG3	INT0	PAS0	ST	_	External interrupt 0 input
	STCK	PAS0	ST	_	STM clock input
	SEG3	PAS0	_	SEG	LCD segment output
PAPU PAWU ST CMOS General purpose I/O. Register ena		General purpose I/O. Register enabled pull-up and wake-up			
OCDSCK/SEG4	ICPCK	_	ST	_	In-circuit programming clock pin
	OCDSCK	_	ST	_	On-chip debug support clock pin, for EV chip only
	SEG4	PAS0	_	SEG	LCD segment output

Rev. 1.10 10 August 18, 2020

Pin Name	Function	ОРТ	I/T	O/T	Description
	PA3	PAPU PAWU	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
PA3/INT1/STPI	INT1	_	ST	_	External interrupt 1 input
	STPI	_	ST	_	STM capture input
PA4/STP	PA4	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STP	PAS1	_	CMOS	STM output
PA5/STPB/SEG5	PA5	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	STPB	PAS1	_	CMOS	STM inverting output
	SEG5	PAS1	_	SEG	LCD segment output
PA6/SEG6	PA6	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	SEG6	PAS1	_	SEG	LCD segment output
PA7/SEG7	PA7	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up
	SEG7	PAS1	ST	_	External interrupt 1
RES	RES	_	ST	_	External reset input
PB1	PB1	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up
SEG0/COM2	SEG0	COMS	_	SEG	LCD segment output
3EG0/COM2	COM2	COMS	_	COM	LCD common output
SEG1/COM3	SEG1	COMS	_	SEG	LCD segment output
SEG I/COIVIS	COM3	COMS	_	COM	LCD common output
SEG8~SEG22	SEG8~ SEG22	_	_	SEG	LCD segment output
COM2/SEG24	COM2	COMS	_	COM	LCD common output
OOM2/OLO24	SEG24	COMS	_	SEG	LCD segment output
COM3/SEG23	COM3	COMS	_	COM	LCD common output
CONS/SEG23	SEG23	COMS	_	SEG	LCD segment output
COM0~COM1	COM0~ COM1	_	_	СОМ	LCD common output
VDD1	VDD1	_	PWR	_	Positive power supply
VDD2	VDD2		PWR	_	Positive power supply
FDI	FDI	_	AN	_	VDD2 power input control
VSS	VSS	_	PWR	_	Negative power supply, ground
C1	C1		AN		LCD voltage pump
C2	C2	_	AN	_	LCD voltage pump
V1	V1		PWR	AN	LCD power supply

Legend: I/T: Input type;

OPT: Optional by register option;

PWR: Power; ST: Schmitt Trigger input; CMOS: CMOS output; AN: Analog signal; SEG: LCD SEG output;

COM: LCD COM output.

Rev. 1.10 11 August 18, 2020

O/T: Output type;

Absolute Maximum Ratings

Supply Voltage	V _{SS} -0.3V to 6.0V
Input Voltage	V_{SS} -0.3V to V_{DD} +0.3V
Storage Temperature	-50°C to 125°C
Operating Temperature	-40°C to 85°C
I _{OL} Total	80mA
I _{OH} Total	-80mA
Total Power Dissipation	500mW

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to these devices. Functional operation of these devices at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency, pin load conditions, temperature and program instruction type, etc., can all exert an influence on the measured values.

Operating Voltage Characteristics

Ta=-40°C~85°C

Syn	nbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
		f _{HIRC} =2MHz	1.8	_	5.5		
	Operating Voltage – HIRC	f _{HIRC} =4MHz	1.8	_	5.5	V	
V _{DD}		f _{HIRC} =8MHz	2.2	_	5.5		
	Operating Voltage LIBC	f _{LIRC} =32kHz for HT69F3742L	1.2	_	5.5	\/	
	Operating Voltage – LIRC	f _{LIRC} =32kHz for HT69F3742	1.8	_	5.5	\ \	

Standby Current Characteristics

Ta=25°C, unless otherwise specified

Council of	Céan dhu Mada		Test Conditions	Min	T	Marr	Max.@	I I mit
Symbol	Standby Mode	V _{DD}	Conditions	Min.	Тур.	Max.	85°C	Unit
		1.8V		_	1.2	2.4	2.9	
	SLEEP Mode	3V	WDT on	_	1.5	3.0	3.6	μΑ
		5V		_	3	5	6	
		1.8V		_	2.4	4.0	4.8	
	IDLE0 Mode – LIRC	3V	f _{SUB} on	_	3	5	6	μA
		5V		_	5	10	12	
	1.8V		_	60	100	160		
I _{STB}		3V	f _{SUB} on, f _{SYS} =2MHz	_	80	120	240	μA
		5V		_	160	240	360	
		1.8V		_	144	200	240	
	IDLE1 Mode – HIRC	3V	f _{SUB} on, f _{SYS} =4MHz	_	180	250	300	μA
		5V		_	400	600	720	
		2.2V		_	288	400	480	
		3V	f _{SUB} on, f _{SYS} =8MHz	_	360	500	600	μA
		5V		_	600	800	960	

Rev. 1.10 12 August 18, 2020

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are setup in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- All Standby Current values are taken after a HALT instruction execution thus stopping all instruction execution.

Operating Current Characteristics

Ta=-40°C~85°C

Cymphol	Operating Mode		Test Conditions	Min.	Turn	Max.	Unit
Symbol	Operating wode	V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Oilit
		1.5V		_	3	6	
		3V	f _{SYS} =32kHz for HT69F3742L	_	4	10	μΑ
	SLOW Mode – LIRC		_	10	30		
	SLOW Mode – LIRC	1.8V	1.8V 3V f _{sys} =32kHz for HT69F3742	_	8	16	
		3V		_	10	20	μΑ
		5V		_	30	50	
		1.8V		_	0.2	0.4	
I _{DD}		3V	f _{SYS} =2MHz	_	0.3	0.5	mA
		5V		_	0.6	1.0	
		1.8V		_	0.3	0.5	
	FAST Mode – HIRC	3V	f _{SYS} =4MHz	_	0.4	0.6	mA
		5V		_	0.8	1.2	
		2.2V		_	0.6	1.0	
		3V	f _{SYS} =8MHz	_	0.8	1.2	mA
		5V		_	1.6	2.4	

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are setup in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- 4. All Operating Current values are measured using a continuous NOP instruction program loop.

A.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency and temperature etc., can all exert an influence on the measured values.

High Speed Internal Oscillator - HIRC - Frequency Accuracy

During the program writing operation the writer will trim the HIRC oscillator at a user selected HIRC frequency and user selected voltage of either 3V or 5V.

Cumbal	Parameter	Test	Conditions	Min	Тур	Max	Unit
Symbol	Farameter	V _{DD}	Temp.	IVIIII	тур	IVIAX	Ullit
	2MHz Writer Trimmed HIRC Frequency		25°C	-1%	2	+1%	
		3V/5V	-20°C~60°C	-2%	2	+2%	
			-40°C~85°C	-3%	2	+3%	MHz
		1.8V~5.5V	25°C	-12%	2	+12%	
f _{HIRC}		1.60~3.50	-40°C~85°C	-15%	2	+15%	
		3V/5V	25°C	-1%	4	+1%	
	AMILT Writer Trimmed LIDC Frequency	30/30	-40°C~85°C	-2.5%	4	+2.5%	NAL I-
	4MHz Writer Trimmed HIRC Frequency	1.8V~5.5V	25°C	-3.5%	4	+3.5%	MHz
	1		-40°C~85°C	-4%	4	+4%	

Rev. 1.10 13 August 18, 2020


Symbol	Dovemeter	Test Conditions		Min	Trees	Max	l lmit
	Parameter	V _{DD}	Temp.	Min	Тур	IVIAX	Unit
	2) //E) /	25°C	-1%	8	+1%		
£	OMILIZ Writer Trimmed LIDC Frequency	3V/5V	-40°C~85°C	-10%	8	+2%	MHz
f _{HIRC}		0.0) / 5.5) /	25°C	-10%	8	+3%	IVITZ
		2.2V~5.5V	-40°C~85°C	-15%	8	+5%	

- Note: 1. The 3V/5V values for V_{DD} are provided as these are the two selectable fixed voltages at which the HIRC frequency is trimmed by the writer.
 - 2. The row below the 3V/5V trim voltage row is provided to show the values for the full V_{DD} range operating voltage. It is recommended that the trim voltage is fixed at 3V for application voltage ranges from 1.8V to 3.6V and fixed at 5V for application voltage ranges from 3.3V to 5.5V.
 - 3. The minimum and maximum tolerance values provided in the table are only for the frequency at which the writer trims the HIRC oscillator. After trimming at this chosen specific frequency any change in HIRC oscillator frequency using the oscillator register control bits by the application program will give a frequency tolerance to within ±20%.

Low Speed Internal Oscillator Characteristics - LIRC

Symbol Parameter	Те	est Conditions	Min.	Тур.	Max.	Unit	
Symbol	rarameter	V _{DD}	Temp.	IVIIII.	iyp.	IVIAX.	Unit
f	LIDO Francisco		-40°C~85°C	-20%	32	+20%	kHz
t _{LIRC}	LIRC Frequency	3V~5.5V	-40°C~85°C	-10%	32	+10%	KIIZ
tstart	LIRC Start Up Time	_	_	_	_	100	μs

Operating Frequency Characteristic Curves

System Start Up Time Characteristics

Ta=-40°C~85°C

Symbol	Dozomotov		Test Conditions	Min.	Tun	Max	Heit
	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	Max.	Unit
	System Start-up Time	_	fsys=f _H ~f _H /64, f _H =f _{HIRC}	_	16	_	tsys
	Wake-up from Condition where f _{SYS} is Off	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	tsys
t _{sst}	System Start-up Time	_	f _{SYS} =f _H ~f _H /64, f _H =f _{HIRC}	_	2	_	t _{SYS}
1551	Wake-up from Condition where f _{SYS} is On	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	tsys
	System Speed Switch Time FAST to SLOW Mode or SLOW to FAST Mode	_	f_{HIRC} switches from off \rightarrow on	_	16	_	t _{HIRC}

Rev. 1.10 14 August 18, 2020

Symbol	Parameter	Test Conditions			Tun	Max.	Unit
Symbol	Faiailletei		Conditions	Min.	Тур.	IVIAX.	Oilit
	System Reset Delay Time Reset Source from Power-on Reset or LVR Hardware Reset (LVR function is only available in the HT69F3742 device)	_	RR _{POR} =5V/ms	42	48	54	ms
t _{RSTD}	System Reset Delay Time LVRC/WDTC/RSTC Software Reset	_	_				
	System Reset Delay Time Reset Source from WDT Overflow or Reset Pin Reset or FDI Pin Reset	_	_	14	16	18	ms
tsreset	Minimum Software Reset Width to Reset	_	_	45	90	120	μs

- Note: 1. For the System Start-up time values, whether f_{SYS} is on or off depends upon the mode type and the chosen f_{SYS} system oscillator. Details are provided in the System Operating Modes section.
 - 2. The time units, shown by the symbols t_{HIRC} , t_{SYS} etc. are the inverse of the corresponding frequency values as provided in the frequency tables. For example $t_{HIRC} = 1/f_{HIRC}$, $t_{SYS} = 1/f_{SYS}$ etc.
 - 3. If the LIRC is used as the system clock and if it is off when in the SLEEP Mode, then an additional LIRC start up time, t_{START}, as provided in the LIRC frequency table, must be added to the t_{SST} time in the table above.
 - 4. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up.

Input/Output Characteristics

Ta=-40°C~85°C

Comple al	Davamatav	Т	est Conditions	Min	T	Mari	I I m ! 4
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
	Input Low Voltage for I/O Porte or Input Dine	5V		0	_	1.5	
V _{IL}	Input Low Voltage for I/O Ports or Input Pins	_	_	0	_	0.2V _{DD}	V
	Input Low Voltage for Reset Pin	_	_	0	_	0.4V _{DD}	
	Input High Voltage for I/O Ports or Input Dine	5V		3.5	_	5.0	
VIH	Input High Voltage for I/O Ports or Input Pins	_	_	0.8V _{DD}	_	V _{DD}	V
	Input High Voltage for Reset Pin	_	_	0.9V _{DD}	_	V _{DD}	
	Sink Current for I/O Pins	3V	\/ -0.1\/	15.5	31	_	mA
I _{OL}	Sink Current for I/O Pins	5V		31	62	_	MA
	Source Current for I/O Pins	3V	V _{OH} =0.9V _{DD}	-3.5	-7.0	_	m Λ
Іон	Source Current for I/O Pins	5V	VOH-U.9VDD	-7.2	-14.5	_	mA
		3V	LVPU=0	20	60	100	
_	Dull high Designations for UC Denta (Note)	5V	PAPU=PBPU=FFH	10	30	50	l ₁ O
R _{PH}	Pull-high Resistance for I/O Ports (Note)	3V	LVPU=1	6.67	15	23	kΩ
		5V	PAPU=PBPU=FFH	3.5	7.5	12	
I _{LEAK}	Input Leakage Current	5V	V _{IN} =V _{DD} or V _{IN} =V _{SS}	_	_	±1	μΑ
t _{TCK}	STCK Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{TPI}	STPI Input Pin Minimum Pulse Width	_	_	0.3	_	_	μs
t _{RES}	External Reset Minimum Pulse Width	_	_	10	_	_	μs

Note: The R_{PH} internal pull high resistance value is calculated by connecting to ground and enabling input pin with a pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PH} value.

Rev. 1.10 15 August 18, 2020

Memory Characteristics

Ta=-40°C~85°C, unless otherwise specified

Cumbal	Parameter		Test Conditions	Min.	Turn	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Unit
V _{DD}	V _{DD} for Read	_	_	1.4	_	5.5	V
V DD	V _{DD} for Erase/Write	_	_	2.2	_	5.5	\ \ \
Flash Pr	ogram Memory / Data EEPROM Memory						
t _{DEW}	Erase / Write Cycle Time – Flash Program Memory	_	_	_	2	3	ms
	Write Cycle Time – Data EEPROM Memory	_	_	_	4	6	ms
I _{DDPGM}	Programming/Erase Current on VDD	_	_	_	_	5.0	mA
_	Cell Endurance – Flash Program Memory	_	_	10K	_	_	E/W
E _P	Cell Endurance – Data EEPROM Memory	_	_	100K	_	_	E/W
t _{RETD}	ROM Data Retention time	_	Ta=25°C	_	40	_	Year
RAM Da	ta Memory						
V _{DR}	RAM Data Retention voltage		Device in SLEEP Mode	1.0		_	V

LVR/LVD Electrical Characteristics

Ta=-40°C~85°C

Cumbal	Parameter		Test Conditions	Min.	Tim	May	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	IVIAA.	Oiiit
			LVR enable, voltage select 1.7V	-5%	1.70	+5%	
			LVR enable, voltage select 1.9V	-5%	1.90	+5%	
V_{LVR}	Low Voltage Reset Voltage for HT69F3742 only	_	LVR enable, voltage select 2.55V	-3%	2.55	+3%	V
	111001 0742 01lly		LVR enable, voltage select 3.15V	-3%	3.15	+3%	
			LVR enable, voltage select 3.8V	-3%	3.80	+5% +5% +3% +3%	
			LVD enable, voltage select 1.8V		1.8		
			LVD enable, voltage select 2.0V		2.0		
			LVD enable, voltage select 2.4V		2.4		
	Law Valtaria Data at Valtaria		LVD enable, voltage select 2.7V	F0/	2.7		v
V _{LVD}	Low Voltage Detect Voltage	_	LVD enable, voltage select 3.0V	-5%	3.0	+5%	\ \
			LVD enable, voltage select 3.3V		3.3	1	
			LVD enable, voltage select 3.6V		3.6		
			LVD enable, voltage select 4.0V		4.0		
ILVRLVD	Operating Current for LITCOF 2742 only	3V	LVD enable, LVR enable,	_	_	10	μΑ
ILVRLVD	Operating Current for HT69F3742 only	5V	V _{LVR} =1.9V, V _{LVD} =2V	_	8	15	μA
	LVDQ Quality Times	_	For LVR enable for HT69F3742 only , VBGEN=0, LVD off \rightarrow on	_	_	18	μs
t _{LVDS}	LVDO Stable Time	_	For LVR disable, VBGEN=0, LVD off → on	_	_	150	μs
t _{LVR}	Minimum Low Voltage Width to Reset for HT69F3742 only	_	_	120	240	480	μs
t _{LVD}	Minimum Low Voltage Width to Interrupt	_	_	60	120	240	μs
I _{LVR}	Additional Current for LVR Enable for HT69F3742 only	5V	LVD disable	_	_	8	μА
I _{LVD}	Additional Current for LVD Enable	5V	LVR disable	_	_	8	μΑ

Note: The HT69F3742 device contains the LVR and LVD functions. The HT69F3742L device only contains the LVD function.

Rev. 1.10 16 August 18, 2020

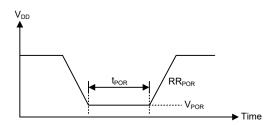
LCD Electrical Characteristics

Ta=-40°C~85°C, unless otherwise specified

Cumala a l	Downston		Test Conditions	Min	T	Max.	I I m ! A
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	IVIAX.	Unit
		_	Power supply from V _{DD}	1.2	_	3.3	
Vin	LCD Operating Voltage	_	Power supply from internal V _{REFIN}	1.8	_	3.3 ^(Note)	V
	1.5V	No load, LCDP=0, V _A =2×V _{DD} , 1/2 Bias	_	0.2	0.5		
l	Additional Current for LCD Enable	3V	LCDPCK[2:0]=000B	_	0.3	0.6	
I _{LCD}	Additional Current for LCD Enable	1.8V	No load, LCDP=1, V _A =2×V _{REFIN} , 1/2 Bias	_	1.8	3.6	μA
		3V	LCDPCK[2:0]=000B	_	2.0	4.0	
1	LCD Common and Sogment Sink Current	1.5V	V _{OI} = 0.1 V _A	50	100	_	
ILCDOL	LCD Common and Segment Sink Current	3V	V VOL-U. I VA		420	_	μA
	LCD Common and Segment Source	1.5V	V _{OH} =0.9V _A	-50	-100	_	
ILCDOH	Current	3V	VOH-U.9VA	-80	-160	_	μA

Note: When the power source is from V_{REFIN} , the voltage V_A is generated internally and has a value of $V_{REFIN} \times 2$. The LCD maximum voltage is the V_1 with a fixed voltage of 3V, and the V_{DD} voltage range should be limited to $1.8V \sim 3.3V$.

Power Switch Characteristics


Ta=-40°C~85°C

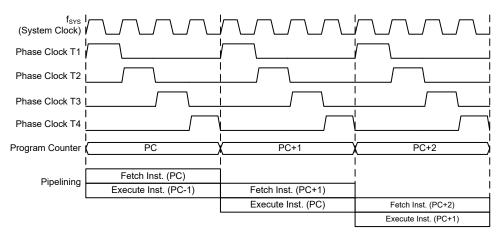
Symbol	Downwater		Test Conditions		Tun	Max.	Unit
	Parameter	V _{DD}	Conditions	Min.	Тур.	wax.	Unit
.,	VDD1 Pin Input Voltage	_	V _{DD2} =1.2V~3.6V	1.2	_	3.6	V
V DD1		_	V _{DD2} =3.0V~5.5V	3.0	_	5.5	V
.,	VDD2 Din Innut Voltage	_	V _{DD1} =1.2V~3.6V	1.2	_	3.6	V
V _{DD2} VDD2 Pin Input Voltage	_	V _{DD1} =3.0V~5.5V	3.0	_	5.5	V	
t _{FDI}	External FDI Minimum Low Pulse Width	_	_	10	_	_	μs

Power on Reset Electrical Characteristics

Ta=25°C

Symbol	Poromotor	Tes	st Conditions	Min.	Typ.	Max.	Unit
Зушьог	nbol Parameter		Conditions	IVIIII.	iyp.	IVIAX.	Oilit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RRPOR	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V_{DD} Stays at V_{POR} to Ensure Power-on Reset	_	_	1	_	_	ms

Rev. 1.10 17 August 18, 2020


System Architecture

A key factor in the high-performance features of the Holtek range of microcontrollers is attributed to their internal system architecture. The devices take advantage of the usual features found within RISC microcontrollers providing increased speed of operation and Periodic performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch or call instructions. An 8-bit wide ALU is used in practically all instruction set operations, which carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O control system with maximum reliability and flexibility. This makes the devices suitable for low-cost, high-volume production for controller applications.

Clocking and Pipelining

The main system clock, derived from either an HIRC or LIRC oscillator is subdivided into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to first obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement for this extra cycle should be taken into account by programmers in timing sensitive applications.

System Clocking and Pipelining

Rev. 1.10 18 August 18, 2020

Instruction Fetching

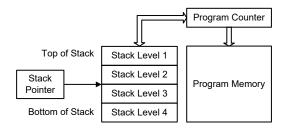
Program Counter

During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demand a jump to a non-consecutive Program Memory address. Only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program.

When executing instructions requiring jumps to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.

Program Counter						
Program Counter High Byte	PCL Register					
PC11~PC8	PCL7~PCL0					

Program Counter


The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly, however, as only this low byte is available for manipulation, the jumps are limited to the present page of memory that is 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is needed to pre-fetch.

Stack

This is a special part of the memory which is used to save the contents of the Program Counter only. The stack is organized into 4 levels and neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching. If the stack is overflow, the first Program Counter saved in the stack will be lost.

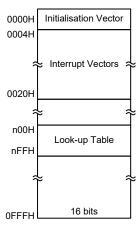
Rev. 1.10 19 August 18, 2020

Arithmetic and Logic Unit - ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions:

- Arithmetic operations:
 ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA
- Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- Increment and Decrement: INCA, INC, DECA, DEC
- Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Rev. 1.10 20 August 18, 2020



Flash Program Memory

The Program Memory is the location where the user code or program is stored. For these devices the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, these Flash devices offer users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating.

Structure

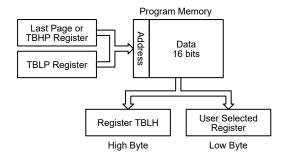
The Program Memory has a capacity of 4K×16 bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries. Table data, which can be setup in any location within the Program Memory, is addressed by a separate table pointer register.

Program Memory Structure

Special Vectors

Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 0000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution.

Look-up Table


Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be setup by placing the address of the look up data to be retrieved in the table pointer registers, TBLP and TBHP. These registers define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the "TABRD[m]" or "TABRDL[m]" instructions, respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as 0.

Rev. 1.10 21 August 18, 2020

The accompanying diagram illustrates the addressing data flow of the look-up table.

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from the microcontroller. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "0F00H" which refers to the start address of the last page within the 4K words Program Memory of the microcontroller. The table pointer low byte register is setup here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "0F06H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the specified address pointed by the TBLP and TBHP register if the "TABRD [m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRD [m]" instruction is executed.

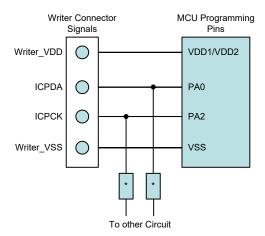
Because the TBLH register is a read-only register and cannot be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation.

Table Read Program Example

```
tempreg1 db ?
                   ; temporary register #1
tempreg2 db ?
                   ; temporary register #2
mov a, 06h
                   ; initialise low table pointer - note that this address is referenced
mov tblp, a
                   ; to the last page or the page that thhp pointed
mov a, OFh
                   ; initialise high table pointer
mov tbhp, a
tabrd tempreg1
                   ; transfers value in table referenced by table pointer data at program
                   ; memory address "OFO6H" transferred to tempreg1 and TBLH
dec tblp
                   ; reduce value of table pointer by one
tabrd tempreg2
                   ; transfers value in table referenced by table pointer data at program
                   ; memory address "OF05H" transferred to tempreg2 and TBLH in this
                   ; example the data 1AH is transferred to tempreg1 and data "OFH" to
                   ; register tempreg2
                   ; the value "OOH" will be transferred to the high byte register TBLH
org OFOOh
                   ; sets initial address of program memory
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
```

Rev. 1.10 22 August 18, 2020

In Circuit Programming - ICP


The provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device.

As an additional convenience, Holtek has provided a means of programming the microcontroller incircuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and re-insertion of the device.

Holtek Writer Pins	MCU Programming Pins	Pin Description		
ICPDA	PA0	Programming Serial Data/Address		
ICPCK	PA2	Programming Clock		
VDD	VDD1/VDD2	Power Supply		
VSS	VSS	Ground		

The Program Memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply. The technical details regarding the in-circuit programming of the device are beyond the scope of this document and will be supplied in supplementary literature.

During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purpose to ensure that no other outputs are connected to these two pins.

Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF.

On-Chip Debug Support - OCDS

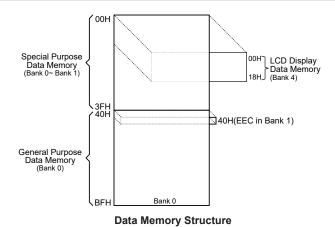
The devices have an EV chip named HT69V3742, which is used to emulate the HT69F3742/HT69F3742L devices. This EV chip device also provides an "On-Chip Debug" function to debug the real MCU device during the development process. The EV chip and the real MCU device are almost functionally compatible except for the "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the Holtek HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins for ICP. For more detailed OCDS information, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide".

Rev. 1.10 23 August 18, 2020

Holtek e-Link Pins	EV Chip OCDS Pins	Pin Description
OCDSDA	OCDSDA	On-Chip Debug Support Data/Address input/output
OCDSCK	OCDSCK	On-Chip Debug Support Clock input
VDD	VDD1/VDD2	Power Supply
VSS	VSS	Ground

RAM Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.


Categorized into two types, the first of these is an area of RAM where special function registers are located. These registers have fixed locations and are necessary for correct operation of the device. Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is reserved for general purpose use. All locations within this area are read and write accessible under program control.

There is another area of the Data Memory reserved for the LCD display Data Memory. This special area of Data Memory is mapped directly to the LCD display so data written into this memory area will directly affect the displayed data.

Structure

The overall Data Memory is subdivided into several banks, all of which are implemented in 8-bit wide RAM. The Special Purpose Data Memory registers are accessible in all banks, with the exception of the EEC register at address 40H, which is only accessible in Bank 1. Switching between the different Data Memory banks is achieved by setting the Data Memory Bank Pointer to the correct value. The start address of the Data Memory for the devices is the address 00H.

Special Purpose Data Memory		General Purpose Data Memory		
Located Banks	Capacity	Address	Address	
Bank 0~1	128×8	Bank 0: 40H~BFH	Bank 4: 00H~18H	

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user programing for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory.

Rev. 1.10 24 August 18, 2020

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H".

	5	
00H	Bank 0 IAR0	Bank 1
00H	MP0	
02H	IAR1	
02H	MP1	
04H	BP	
05H	ACC	
06H	PCL	
07H	TBLP	
08H	TBLH	
09H	TBHP	
0AH	STATUS	
0BH	SCC	
0CH	HIRCC	
0DH		
0EH		
0FH	RSTFC	
10H	INTC0	
11H	INTC1	
12H	INTC2	
13H		
14H	PA	
15H	PAC	
16H	PAPU	
17H	PAWU	
18H	PB	
19H	PBC	
1AH	PBPU	
1BH	PAS0	
1CH	PAS1	
1DH		
1EH	LVPUC	
1FH	RSTC	
20H	INTEG	
21H	WDTC	
22H	TBC	
23H		
24H	PSCR	
25H		
26H	STMC0	
27H	STMC1	
28H	STMDL	
29H	STMDH	
2AH	STMAL	
2BH	STMAH	
2CH	LCDC	
2DH	COMS	
2EH 2FH	FDIEG	
2FH 30H	FDIR	
31H	FDIS	
32H	LVRC LVDC	
33H	LVDC	
34H		
35H		
36H		
37H		
38H		
39H		
3AH		
3BH		
3CH		
3DH		
3EH	EEA	
3FH	EED	
40H		EEC
	: Unused, read as	s 00H

Special Purpose Data Memory Structure

Special Function Register Description

Most of the Special Function Register details will be described in the relevant functional section. However, several registers require a separate description in this section.

Indirect Addressing Registers - IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a pair, IAR0 and MP0 can together access data from Bank 0 while the IAR1 and MP1 register pair can access data from any bank. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers indirectly will return a result of "00H" and writing to the registers indirectly will result in no operation.

Memory Pointers - MP0, MP1

Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Bank 0, while MP1 and IAR1 are used to access data from all banks according to BP register. Direct Addressing can only be used within Bank 0, all other Banks must be addressed indirectly using MP1 and IAR1.

The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4.

Indirect Addressing Program Example

```
data .section 'data'
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db?
code .section at 0 code
org 00h
start:
     mov a, 04h
                             ; setup size of block
     mov block, a
     mov a, offset adres1
                            ; Accumulator loaded with first RAM address
                             ; setup memory pointer with first RAM address
     mov mp0, a
loop:
     clr IAR0
                             ; clear the data at address defined by MPO
     inc mp0
                             ; increment memory pointer
     sdz block
                             ; check if last memory location has been cleared
     jmp loop
continue:
```

The important point to note here is that in the example shown above, no reference is made to specific Data Memory addresses.

Rev. 1.10 26 August 18, 2020

Bank Pointer - BP

For these devices, the Data Memory is divided into five banks, Bank0~Bank4. Selecting the required Data Memory area is achieved using the Bank Pointer. Bit 0~Bit 2 of the Bank Pointer is used to select Data Memory Bank 0~Bank 4.

The Data Memory is initialised to Bank 0 after a reset, except for a WDT time-out reset in IDLE or SLEEP Mode, in which case, the Data Memory bank remains unaffected. It should be noted that the Special Purpose Data Memory is not affected by the bank selection, which means that the Special Function Registers can be accessed from within any bank. Directly addressing the Data Memory will always result in Bank 0 being accessed irrespective of the value of the Bank Pointer. Accessing data from Bank1 must be implemented using Indirect Addressing.

BP Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	BP2	BP1	BP0
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	0	0	0

Bit 7~3 Unimplemented, read as "0"

Bit 2~0 **BP2~BP0**: Data Memory Bank selection

000: Bank 0 001: Bank 1 010: Bank 2 011: Bank 3 100: Bank 4 Others: Undefined

Accumulator - ACC

The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register - PCL

To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers - TBLP, TBHP, TBLH

These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be setup before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instruction, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table

Rev. 1.10 27 August 18, 2020

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.

Status Register - STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

- C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
- AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is cleared.
- Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.
- OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.
- PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
- TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

• STATUS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	Х	Х	Х	Х

"x": unknown

Bit 7~6 Unimplemented, read as "0"

Bit 5 TO: Watchdog Time-out flag

0: After power up or executing the "CLR WDT" or "HALT" instruction

1: A watchdog time-out occurred.

Bit 4 **PDF**: Power down flag

0: After power up or executing the "CLR WDT" instruction

1: By executing the "HALT" instruction

Bit 3 **OV**: Overflow flag

0: No overflow

1: An operation results in a carry into the highest-order bit but not a carry out of the highest-order bit or vice versa.

Rev. 1.10 28 August 18, 2020

Bit 2 Z: Zero flag

0: The result of an arithmetic or logical operation is not zero 1: The result of an arithmetic or logical operation is zero

Bit 1 AC: Auxiliary flag

0: No auxiliary carry

1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction

Bit 0 C: Carry flag

0: No carry-out

1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation

The C flag is also affected by a rotate through carry instruction.

EEPROM Data Memory

The devices contain an area of internal EEPROM Data Memory. EEPROM is by its nature a non-volatile form of re-programmable memory, with data retention even when its power supply is removed. By incorporating this kind of data memory, a whole new host of application possibilities are made available to the designer. The availability of EEPROM storage allows information such as product identification numbers, calibration values, specific user data, system setup data or other product information to be stored directly within the product microcontroller. The process of reading and writing data to the EEPROM memory has been reduced to a very trivial affair.

EEPROM Data Memory Structure

The EEPROM Data Memory capacity is 128×8 bits. Unlike the Program Memory and Data Memory, the EEPROM Data Memory is not directly mapped and is therefore not directly accessible in the same way as the other types of memory. Read and Write operations to the EEPROM are carried out in single byte operations using an address and data register in Bank 0 and a single control register in Bank 1.

EEPROM Registers

Three registers control the overall operation of the internal EEPROM Data Memory. These are the address register, EEA, the data register, EED and a single control register, EEC. As both the EEA and EED registers are located in Bank 0, they can be directly accessed in the same way as any other Special Function Register. The EEC register however, being located in Bank 1, cannot be directly addressed and can only be read from or written to indirectly using the MP1 Memory Pointer and Indirect Addressing Register, IAR1. Because the EEC control register is located at address 40H in Bank 1, the MP1 Memory Pointer must first be set to the value 40H and the Bank Pointer register, BP, set to the value, 01H, before any operations on the EEC register are executed.

Register	Bit									
Name	7	6	5	4	3	2	1	0		
EEA	_	EEA6	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0		
EED	EED7	EED6	EED5	EED4	EED3	EED2	EED1	EED0		
EEC	_	_	_	_	WREN	WR	RDEN	RD		

EEPROM Control Register List

• EEA Register

Bit	7	6	5	4	3	2	1	0
Name	_	EEA6	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0
R/W	_	R/W						
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit $6\sim0$ **EEA6~EEA0**: Data EEPROM address bit $6\sim$ bit 0

• EED Register

Bit	7	6	5	4	3	2	1	0
Name	EED7	EED6	EED5	EED4	EED3	EED2	EED1	EED0
R/W								
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **EED7~EED0**: Data EEPROM data bit $7 \sim$ bit 0

EEC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	WREN	WR	RDEN	RD
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 WREN: Data EEPROM Write Enable

0: Disable 1: Enable

This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations.

Bit 2 WR: EEPROM Write Control

0: Write cycle has finished

1: Activate a write cycle

This is the Data EEPROM Write Control Bit and when set high by the application program will activate a write cycle. This bit will be automatically reset to zero by the hardware after the write cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high.

Bit 1 RDEN: Data EEPROM Read Enable

0: Disable 1: Enable

This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations.

Bit 0 **RD**: EEPROM Read Control

0: Read cycle has finished

1: Activate a read cycle

This is the Data EEPROM Read Control Bit and when set high by the application program will activate a read cycle. This bit will be automatically reset to zero by the hardware after the read cycle has finished. Setting this bit high will have no effect if the RDEN has not first been set high.

Note: 1. The WREN, WR, RDEN and RD cannot be set high at the same time in one instruction. WR and RD cannot be set high at the same time.

- 2. Ensure that the f_{SUB} clock is stable before executing the write operation.
- 3. Ensure that the write operation is totally complete before changing the contents of the EEPROM related registers.

Rev. 1.10 30 August 18, 2020

Reading Data from the EEPROM

To read data from the EEPROM, The EEPROM address of the data to be read must then be placed in the EEA register. Then the read enable bit, RDEN, in the EEC register must first be set high to enable the read function. If the RD bit in the EEC register is now set high, a read cycle will be initiated. Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set. When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be read from the EED register. The data will remain in the EED register until another read or write operation is executed. The application program can poll the RD bit to determine when the data is valid for reading.

Writing Data to the EEPROM

To write data to the EEPROM, the EEPROM address of the data to be written must first be placed in the EEA register and the data placed in the EED register. To initiate a write cycle, the write enable bit, WREN, in the EEC register must first be set high to enable the write function. After this, the WR bit in the EEC register must be immediately set high to initiate a write cycle. These two instructions must be executed in two consecutive instruction cycles. The global interrupt bit EMI should also first be cleared before implementing any write operations, and then set again after the write cycle has started. Note that setting the WR bit high will not initiate a write cycle if the WREN bit has not been set. As the EEPROM write cycle is controlled using an internal timer whose operation is asynchronous to microcontroller system clock, a certain time will elapse before the data will have been written into the EEPROM. Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt. When the write cycle terminates, the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the data has been written to the EEPROM. The application program can therefore poll the WR bit to determine when the write cycle has ended.

Write Protection

Protection against inadvertent write operation is provided in several ways. After the device is powered on, the Write enable bit in the control register will be cleared preventing any write operations. Also at power-on the Bank Pointer, BP, will be reset to zero, which means that Data Memory Bank 0 will be selected. As the EEPROM control register is located in Bank 1, this adds a further measure of protection against spurious write operations. During normal program operation, ensuring that the Write Enable bit in the control register is cleared will safeguard against incorrect write operations.

EEPROM Interrupt

The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. When an EEPROM write cycle ends, the DEF request flag will be set. If the global and EEPROM interrupts are enabled and the stack is not full, a jump to the EEPROM Interrupt vector will take place. When the interrupt is serviced the EEPROM interrupt flag will be automatically reset. More details can be obtained in the Interrupt section.

Rev. 1.10 31 August 18, 2020

Programming Considerations

Care must be taken that data is not inadvertently written to the EEPROM. Protection can be enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also the Bank Pointer could be normally cleared to zero as this would inhibit access to Bank 1 where the EEPROM control register exist. Although certainly not necessary, consideration might be given in the application program to the checking of the validity of new write data by a simple read back process. When writing data the WR bit must be set high immediately after the WREN bit has been set high, to ensure the write cycle executes correctly. The global interrupt bit EMI should also be cleared before a write cycle is executed and then re-enabled after the write cycle starts. Note that the device should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is totally completed, otherwise, the EEPROM read or write operation will fail.

Programming Examples

Reading data from the EEPROM - polling method

```
MOV A, EEPROM ADRES
                           ; user defined address
MOV EEA, A
MOV A, 040H
                           ; setup memory pointer MP1
MOV MP1, A
                           ; MP1 points to EEC register
MOV A, 01H
                            ; setup Bank Pointer
MOV BP, A
SET IAR1.1
                           ; set RDEN bit, enable read operations
                            ; start Read Cycle - set RD bit
SET IAR1.0
BACK:
SZ IAR1.0
                            ; check for read cycle end
JMP BACK
CLR IAR1
                            ; disable EEPROM read if no more read operations are required
CLR BP
MOV A, EED
                            ; move read data to register
MOV READ DATA, A
```

Note: For each read operation, the address register should be re-specified followed by setting the RD bit high to activate a read cycle even if the target address is consecutive.

Writing Data to the EEPROM - polling method

```
MOV A, EEPROM ADRES
                           ; user defined address
MOV EEA, A
MOV A, EEPROM DATA
                           ; user defined data
MOV EED, A
MOV A, 040H
                           ; setup memory pointer MP1
MOV MP1, A
                            ; MP1 points to EEC register
MOV A, 01H
                            ; setup Bank Pointer
MOV BP, A
                            ; BP points to data memory bank 1
CLR EMI
SET IAR1.3
                            ; set WREN bit, enable write operations
SET IAR1.2
                            ; start Write Cycle - set WR bit - executed immediately
                            ; after set WREN bit
SET EMI
BACK:
SZ IAR1.2
                            ; check for write cycle end
JMP BACK
CLR BP
```

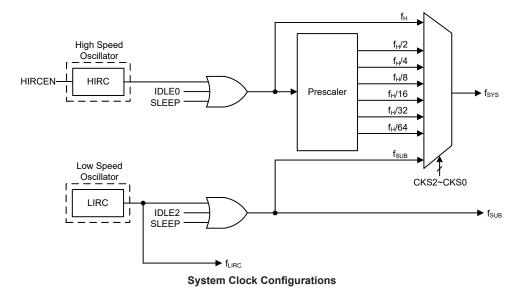
Rev. 1.10 32 August 18, 2020

Oscillators

Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimisation can be achieved in terms of speed and power saving. Oscillator selections and operation are selected through a combination of configuration options and relevant control registers.

Oscillator Overview

In addition to being the source of the main system clock the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupts. Two fully integrated internal oscillators, requiring no external components, are provided to form a wide range of both fast and slow system oscillators. The high frequency oscillator provides higher performance but carries with it the disadvantage of higher power requirements, while the opposite is of course true for the lower frequency oscillator. With the capability of dynamically switching between fast and slow system clock, the devices have the flexibility to optimise the performance/power ratio, a feature especially important in power sensitive portable applications.


Туре	Name	Frequency
Internal High Speed RC	HIRC	2/4/8MHz
Internal Low Speed RC	LIRC	32kHz

Oscillator Types

System Clock Configurations

There are two methods of generating the system clock, a high speed oscillator and a low speed oscillator. The high speed oscillator is the internal 2/4/8MHz RC oscillator, known as the HIRC. The low speed oscillator is the internal 32kHz RC oscillator, known as the LIRC.

The frequency of the slow speed or high speed system clock is also determined using the CKS2~CKS0 bits in the SCC register. Note that two oscillator selections must be made namely one high speed and one low speed system oscillators.

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

Internal High Speed RC Oscillator - HIRC

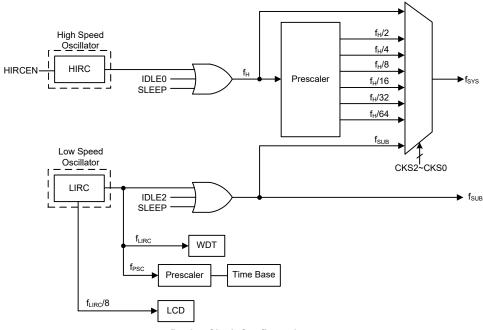
The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal RC oscillator has three fixed frequencies of 2MHz, 4MHz and 8MHz, which are selected using a configuration option. The HIRC1~HIRC0 bits in the HIRCC register must also be setup to match the selected configuration option frequency. Setting up these bits is necessary to ensure that the HIRC frequency accuracy specified in the A.C. Characteristics is achieved. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised.

Internal 32kHz Oscillator - LIRC

The Internal 32kHz System Oscillator is the low frequency oscillator. It is a fully integrated RC oscillator with a typical frequency of 32kHz at full voltage range, requiring no external components for its implementation. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised.

Operating Modes and System Clocks

Present day applications require that their microcontrollers have high performance but often still demand that they consume as little power as possible, conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase current consumption and of course, vice-versa, lower speed clocks reduce current consumption. As Holtek has provided the devices with both high and low speed clock sources and the means to switch between them dynamically, the user can optimise the operation of their microcontroller to achieve the best performance/power ratio.


System Clocks

The devices have many different clock sources for both the CPU and peripheral function operation. By providing the user with a wide range of clock options using configuration options and register programming, a clock system can be configured to obtain maximum application performance.

The main system clock, can come from either a high frequency f_H or low frequency f_{SUB} source, and is selected using the CKS2~CKS0 bits in the SCC register. The high speed system clock can be sourced from the HIRC oscillator. The low speed system clock source can be sourced from the LIRC oscillator. The other choice, which is a divided version of the high speed system oscillator has a range of $f_H/2\sim f_H/64$.

Rev. 1.10 34 August 18, 2020

Device Clock Configurations

Note: When the system clock source f_{SYS} is switched to f_{SUB} from f_H , the high speed oscillator will stop to conserve the power or continue to oscillate to provide the clock source, $f_H \sim f_H/64$, for peripheral circuit to use, which is determined by configuring the corresponding high speed oscillator enable control bit.

System Operation Modes

There are six different modes of operation for the microcontroller, each one with its own special characteristics and which can be chosen according to the specific performance and power requirements of the application. There are two modes allowing normal operation of the microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0, IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power.

Operation	CPU	Register Setting						
Mode	CPU	FHIDEN	FSIDEN	CKS2~CKS0	f sys	fн	f _{SUB}	f _{LIRC}
FAST	On	Х	Х	000~110	f _H ~f _H /64	On	On	On
SLOW	On	х	Х	111	f _{SUB}	On/Off (1)	On	On
IDLE0	Off	0	1	000~110	Off	Off	On	On
				111	On	Oii		
IDLE1	Off	1	1	XXX	On	On	On	On
IDLE2	Off	1	0	000~110	On	On	Off	On
				111	Off	On		
SLEEP	Off	0	0	XXX	Off Off		Off	On ⁽²⁾

"x": Don't care

- Note: 1. The f_H clock will be switched on or off by configuring the corresponding oscillator enable bit in the SLOW mode.
 - 2. The f_{LIRC} clock can be switched on since the WDT function is always enabled in the SLEEP mode.

Rev. 1.10 35 August 18, 2020

FAST Mode

This is one of the main operating modes where the microcontroller has all of its functions operational and where the system clock is provided by one of the high speed oscillators. This mode operates allowing the microcontroller to operate normally with a clock source will come from HIRC oscillator. The high speed oscillator will however first be divided by a ratio ranging from 1 to 64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current.

SLOW Mode

This is also a mode where the microcontroller operates normally although now with a slower speed clock source. The clock source used will be from f_{SUB} . The f_{SUB} clock is derived from the LIRC oscillator.

SLEEP Mode

The SLEEP Mode is entered when a HALT instruction is executed and when the FHIDEN and FSIDEN bits are low. In the SLEEP mode the CPU will be stopped. The f_{SUB} clock provided to the peripheral function will also be stopped, too. However the f_{LIRC} clock still continues to operate since the WDT function is always enabled.

IDLE0 Mode

The IDLE0 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will be switched off but the low speed oscillator will be turned on to drive some peripheral functions.

IDLE1 Mode

The IDLE1 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU will be switched off but both the high and low speed oscillators will be turned on to provide a clock source to keep some peripheral functions operational.

IDLE2 Mode

The IDLE2 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU will be switched off but the high speed oscillator will be turned on to provide a clock source to keep some peripheral functions operational.

Control Registers

The registers, SCC and HIRCC are used to control the system clock and the corresponding oscillator configurations.

Register	Bit							
Name	7	6	5	4	3	2	1	0
SCC	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
HIRCC	_	_	_	_	HIRC1	HIRC0	HIRCF	HIRCEN

System Operating Mode Control Register List

Rev. 1.10 36 August 18, 2020

SCC Register

Bit	7	6	5	4	3	2	1	0
Name	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
R/W	R/W	R/W	R/W	_	_	_	R/W	R/W
POR	1	1	1	_	_	_	0	0

Bit 7~5 CKS2~CKS0: System clock selection

 $\begin{array}{c} 000: f_{H} \\ 001: f_{H}/2 \\ 010: f_{H}/4 \\ 011: f_{H}/8 \\ 100: f_{H}/16 \\ 101: f_{H}/32 \\ 110: f_{H}/64 \\ 111: f_{SUB} \end{array}$

These three bits are used to select which clock is used as the system clock source. In addition to the system clock source directly derived from f_H or f_{SUB} , a divided version of the high speed system oscillator can also be chosen as the system clock source.

Bit 4~2 Unimplemented, read as "0"

Bit 1 FHIDEN: High frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the high speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

Bit 0 FSIDEN: Low frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the low speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

HIRCC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	HIRC1	HIRC0	HIRCF	HIRCEN
R/W	_	_	_	_	R/W	R/W	R	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 HIRC1~HIRC0: HIRC frequency selection

00: 2MHz 01: 4MHz 10: 8MHz 11: 2MHz

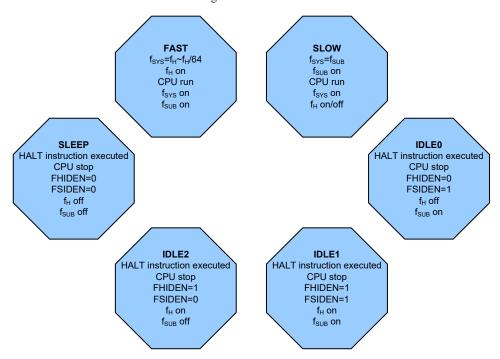
When the HIRC oscillator is enabled or the HIRC frequency selection is changed by application program, the clock frequency will automatically be changed after the HIRCF flag is set high.

It is recommended that the HIRC frequency selected by these two bits should be the same with the frequency determined by the configuration option to achieve the HIRC frequency accuracy specified in the A.C. Characteristics.

Bit 1 HIRCF: HIRC oscillator stable flag

0: HIRC unstable 1: HIRC stable

This bit is used to indicate whether the HIRC oscillator is stable or not. When the HIRCEN bit is set high to enable the HIRC oscillator or the HIRC frequency selection is changed by application program, the HIRCF bit will first be cleared to zero and then set high after the HIRC oscillator is stable.

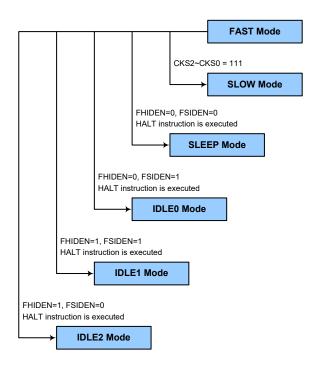

Bit 0 HIRCEN: HIRC oscillator enable control

0: Disable 1: Enable

Operating Mode Switching

The devices can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this way microcontroller operations that do not require high performance can be executed using slower clocks thus requiring less operating current and prolonging battery life in portable applications.

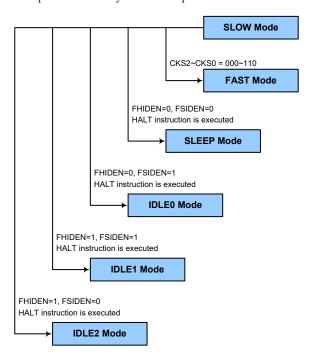
In simple terms, Mode Switching between the FAST Mode and SLOW Mode is executed using the CKS2~CKS0 bits in the SCC register while Mode Switching from the FAST/SLOW Modes to the SLEEP/IDLE Modes is executed via the HALT instruction. When a HALT instruction is executed, whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the FHIDEN and FSIDEN bits in the SCC register.


FAST Mode to SLOW Mode Switching

When running in the FAST Mode, which uses the high speed system oscillator, and therefore consumes more power, the system clock can switch to run in the SLOW Mode by set the CKS2~CKS0 bits to "111" in the SCC register. This will then use the low speed system oscillator which will consume less power. Users may decide to do this for certain operations which do not require high performance and can subsequently reduce power consumption.

The SLOW Mode is sourced from the LIRC oscillator and therefore requires this oscillator to be stable before full mode switching occurs.

Rev. 1.10 38 August 18, 2020



SLOW Mode to FAST Mode Switching

In SLOW mode the system clock is derived from f_{SUB} . When system clock is switched back to the FAST mode from f_{SUB} , the CKS2~CKS0 bits should be set to "000"~"110" and then the system clock will respectively be switched to f_H ~ f_H /64.

However, if f_H is not used in SLOW mode and thus switched off, it will take some time to reoscillate and stabilise when switching to the FAST mode from the SLOW Mode. This is monitored using the HIRCF bit in the HIRCC register. The time duration required for the high speed system oscillator stabilization is specified in the System Start Up Time Characteristics.

Rev. 1.10 39 August 18, 2020

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

Entering the SLEEP Mode

There is only one way for the device to enter the SLEEP Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "0". In this mode all the clocks and functions will be switched off except the WDT function. When this instruction is executed under the conditions described above, the following will occur:

- · The system clock will be stopped and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE0 Mode

There is only one way for the device to enter the IDLEO Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "0" and the FSIDEN bit in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be stopped and the application program will stop at the "HALT" instruction, but the f_{SUB} clock will be on.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE1 Mode

There is only one way for the device to enter the IDLE1 Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H and f_{SUB} clocks will be on but the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Entering the IDLE2 Mode

There is only one way for the device to enter the IDLE2 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "1" and the FSIDEN bit in the SCC register equal to "0". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be on but the f_{SUB} clock will be off and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.

Rev. 1.10 40 August 18, 2020

- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting as the WDT function is always enabled.

Standby Current Considerations

As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the device to as low a value as possible, perhaps only in the order of several micro-amps except in the IDLE1 and IDLE2 Mode, there are other considerations which must also be taken into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. This also applies to the devices which have different package types, as there may be unbonded pins. These must either be setup as outputs or if setup as inputs must have pull-high resistors connected.

Care must also be taken with the loads, which are connected to I/O pins, which are setup as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs. Also note that additional standby current will also be required if the LIRC oscillator has enabled.

In the IDLE1 and IDLE2 Mode the high speed oscillator is on, if the peripheral function clock source is derived from the high speed oscillator, the additional standby current will also be perhaps in the order of several hundred micro-amps.

Wake-up

To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the CPU will be switched off. However, when the device is woken up again, it will take a considerable time for the original system oscillator to restart, stablise and allow normal operation to resume.

After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources listed as follows:

- An external falling edge on Port A
- · An external reset
- · A system interrupt
- · A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset, however, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Although both of these wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a system power-up or executing the clear Watchdog Timer instructions and is set when executing the "HALT" instruction. The TO flag is set if a WDT time-out occurs and causes a wake-up that only resets the Program Counter and Stack Pointer, other flags remain in their original status.

Each pin on Port A can be setup using the PAWU register to permit a negative transition on the pin to wake up the system. When a Port A pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke up the device will not

Rev. 1.10 41 August 18, 2020

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled.

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source

The Watchdog Timer clock source is sourced from the LIRC oscillator. The LIRC internal oscillator has an approximate frequency of 32kHz and this specified internal clock period can vary with $V_{\rm DD}$, temperature and process variations. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{15} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register.

Watchdog Timer Control Register

A single register, WDTC, controls the required time-out period as well as the enable and reset MCU operation.

WDTC Register

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	0	1	1

Bit 7~3 **WE4~WE0**: WDT function software control

01010B/10101B: Enable Other values: Reset MCU

When these bits are changed to any other values due to environmental noise the microcontroller will be reset; this reset operation will be activated after a delay time, t_{SRESET}, and the WRF bit in the RSTFC register will be set high.

Bit 2~0 WS2~WS0: WDT time-out period selection

000: 28/f_{LIRC} 001: 29/f_{LIRC} 010: 210/f_{LIRC}

011: 211/fLIRC (default)

 $\begin{array}{c} 100:\ 2^{12}/f_{LIRC} \\ 101:\ 2^{13}/f_{LIRC} \\ 110:\ 2^{14}/f_{LIRC} \\ 111:\ 2^{15}/f_{LIRC} \end{array}$

These three bits determine the division ratio of the Watchdog Timer source clock, which in turn determines the timeout period.

Rev. 1.10 42 August 18, 2020

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	х	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 **RSTF**: Reset control register software reset flag

Refer to the RES Pin Reset section.

Bit 2 LVRF: LVR function reset flag

Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

Bit 0 WRF: WDT control register software reset flag

0: Not occurred
1: Occurred

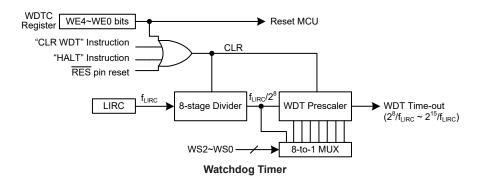
This bit is set high by the WDT Control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

Watchdog Timer Operation

The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, the clear instruction will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five bits, WE4~WE0, in the WDTC register to offer the enable and reset control of the Watchdog Timer. The WDT function will be enabled when the WE4~WE0 bits are set to a value of 01010B or 10101B. If the WE4~WE0 bits are set to any other values other than 01010B and 10101B, it will reset the device after a delay time, t_{SRESET}. After power on these bits will have the value of 01010B.

WE4~WE0 Bits	WDT Function			
01010B/10101B	Enable			
Any other values	Reset MCU			

Watchdog Timer Function Control


Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Four methods can be adopted to clear the contents of the Watchdog Timer. The first is a WDTC software reset, which means a certain value except 01010B and 10101B written into the WE4~WE0 bits, the second is using the Watchdog Timer software clear instruction, the third is via a HALT instruction. The last is an external hardware reset, which means a low level on the external reset pin if the external reset pin function is selected by configuring the RSTC register.

There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT.

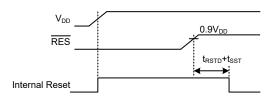
The maximum time-out period is when the 2^{15} division ratio is selected. As an example, with a f_{LIRC} oscillator as its source clock, this will give a maximum watchdog period of around 1 second for the 2^{15} division ratio, and a minimum timeout of 8ms for the 2^{8} division ration.

Rev. 1.10 43 August 18, 2020

Reset and Initialisation

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontroller. In this case, internal circuitry will ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a reset condition when the device is running. One example of this is where after power has been applied and the device is already running, the \overline{RES} line is forcefully pulled low. In such a case, known as a normal operation reset, some of the registers remain unchanged allowing the device to proceed with normal operation after the reset line is allowed to return high.


Another reset exists in the form of a Low Voltage Reset, LVR for HT69F3742 only, where a full reset, similar to the reset is implemented in situations where the power supply voltage falls below a certain threshold. Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset operations result in dif-ferent register conditions being setup.

Reset Functions

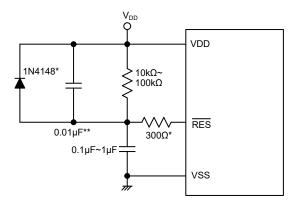
There are several ways in which a microcontroller reset can occur, through events occurring both internally and externally.

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontroller. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known conditions. All the I/O port and port control registers will power up in a high condition ensuring that all I/O ports will be first set to inputs.

Power-On Reset Timing Chart

Rev. 1.10 44 August 18, 2020

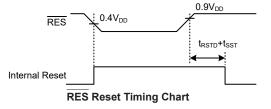


RES Pin Reset

Although the microcontroller has an internal RC reset function, if the V_{DD} power supply rise time is not fast enough or does not stabilise quickly at power-on, the internal reset function may be incapable of providing proper reset operation. For this reason it is recommended that an external RC network is connected to the \overline{RES} pin, whose additional time delay will ensure that the \overline{RES} pin remains low for an extended period to allow the power supply to stabilise. During this time delay, normal operation of the microcontroller will be inhibited. After the \overline{RES} line reaches a certain voltage value, the reset delay time t_{RSTD} is invoked to provide an extra delay time after which the microcontroller will begin normal operation. The abbreviation SST in the figures stands for System Start-up Timer.

For most applications a resistor connected between VDD and the \overline{RES} pin and a capacitor connected between VSS and the \overline{RES} pin will provide a suitable external reset circuit. Any wiring connected to the \overline{RES} pin should be kept as short as possible to minimise any stray noise interference.

For applications that operate within an environment where more noise is present the Enhanced Reset Circuit shown is recommended.



Note: * It is recommended that this component is added for added ESD protection.

** It is recommended that this component is added in environments where power line noise is significant.

External RES Circuit

Pulling the \overline{RES} pin low using external hardware will also execute a device reset. In this case, as in the case of other resets, the Program Counter will reset to zero and program execution initiated from this point.

There is an internal reset control register, RSTC, which is used to provide a reset when the device operates abnormally due to the environmental noise interference. If the content of the RSTC register is set to any value other than 01010101B or 10101010B, it will reset the device after a delay time, t_{SRESET} . After power on the register will have a value of 01010101B.

Rev. 1.10 45 August 18, 2020

RSTC7~RSTC0 Bits	Reset Function
01010101B	RES
10101010B	KES
Any other value	Reset MCU

Reset Function Control

RSTC Register

Bit	7	6	5	4	3	2	1	0
Name	RSTC7	RSTC6	RSTC5	RSTC4	RSTC3	RSTC2	RSTC1	RSTC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	1	0	1

Bit 7~0 **RSTC7~RSTC0**: Reset function control 01010101B/10101010B: **RES** pin

Other values: Reset MCU

If these bits are changed due to adverse environmental conditions, the microcontroller will be reset. The reset operation will be activated after a delay time, t_{SRESET} , and the RSTF bit in the RSTFC register will be set to 1.

All resets will reset this register to POR value except the WDT time out hardware warm reset. Note that when if this register is set to 010101010B or 10101010B to select the \overline{RES} pin function, this configuration has higher priority than other related pin-shared controls.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	Х	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 **RSTF**: Reset control register software reset flag

0: Not occurred 1: Occurred

This bit is set high by the RSTC control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

Bit 2 LVRF: LVR function reset flag

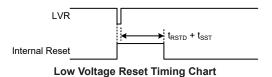
Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

Bit 0 WRF: WDT control register software reset flag

Refer to the Watchdog Timer Control Register section.


Low Voltage Reset

The HT69F3742 device contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level. The LVR function can be enabled or disabled by the LVRC control register. If the LVRC control register is configured to enable the LVR function, the LVR function will be always enabled except in the SLEEP or IDLE mode. If the supply voltage of the device drops to within a range of $0.9V\sim V_{LVR}$ such as might occur when changing the battery, the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will also be set to 1. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between $0.9V\sim V_{LVR}$ must exist for a time greater

Rev. 1.10 46 August 18, 2020

than that specified by t_{LVR} in the LVR/LVD Electrical Characteristics. If the low supply voltage state does not exceed this value, the LVR will ignore the low supply voltage and will not perform a reset function. The actual V_{LVR} value can be selected by the LVS7~LVS0 bits in the LVRC register. If the LVS7~LVS0 bits have any other value, which may perhaps occur due to adverse environmental conditions such as noise, the LVR will reset the device after a delay time, t_{SRESET}. When this happens, the LRF bit in the RSTFC register will be set to 1. After power on the register will have the value of 01100110B. Note that the LVR function will be automatically disabled when the device enters the SLEEP or IDLE mode.

LVRC Register – HT69F3742

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	1	0	0	1	1	0

Bit 7~0 LVS7~LVS0: LVR voltage select

01100110: 1.7V 01010101: 1.9V 00110011: 2.55V 10011001: 3.15V 10101010: 3.8V 11110000: LVR disable

Other values: Generates a MCU reset – register is reset to POR value

When an actual low voltage condition occurs, as specified by one of the five defined LVR voltage value above, an MCU reset will generated. The reset operation will be activated after the low voltage condition keeps more than a t_{LVR} time. In this situation the register contents will remain the same after such a reset occurs.

Any register value, other than 11110000B and the five defined register values above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET} . However in this situation the register contents will be reset to the POR value.

The HT69F3742L device only contains a LVRC software reset function. Please refer to the LVRC register for details.

LVRC Register – HT69F3742L

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	1	0	0	1	1	0

Bit 7~0 LVS7~LVS0: LVR voltage select

The LVR function is always disabled. Any register value, other than the six defined register values above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET}. However in this situation the register contents will be reset to the POR value.

Rev. 1.10 47 August 18, 2020

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

• RSTFC Register - HT69F3742

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	Х	0	0

"x": Unknown

Bit 7~2 Unimplemented, read as "0"

Bit 3 RSTF: Reset control register software reset flag

Refer to the \overline{RES} Pin Reset section.

Bit 2 LVRF: LVR function reset flag

0: Not occur
1: Occurred

This bit is set high when a specific Low Voltage Reset situation condition occurs. This bit can only be cleared to 0 by the application program.

Bit 1 LRF: LVR control register software reset flag

0: Not occur 1: Occurred

This bit is set high if the LVRC register contains any non-defined LVR voltage register values. This in effect acts like a software-reset function. This bit can only be cleared to

0 by the application program.

Bit 0 WRF: WDT control register software reset flag

Refer to the Watchdog Timer section.

RSTFC Register – HT69F3742L

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	Dn	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 3 RSTF: Reset control register software reset flag

Refer to the RES Pin Reset section.

Bit 2 **Dn**

The LVR function is always disabled, so the bit is always "0".

Bit 1 LRF: LVR control register software reset flag

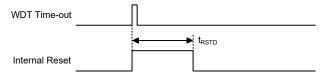
0: Not occur
1: Occurred

This bit is set high if the LVRC register contains any non-defined LVR voltage register values. This in effect acts like a software-reset function. This bit can only be cleared to 0 by the application program.

Bit 0 WRF: WDT control register software reset flag

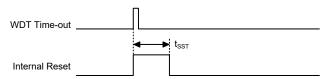
Refer to the Watchdog Timer section.

FDI Pin Reset


If the FDIE7~FDIE0 bits are set to any other values, other than 10101010B, then when a rising edge trigger appears on the FDI pin and the HIRC oscillator is enabled, the microcontroller will be reset. Refer to the power switch section for more associated details.

Rev. 1.10 48 August 18, 2020

Watchdog Time-out Reset during Normal Operation


The Watchdog time-out flag TO will be set to "1" when Watchdog time-out Reset during normal operation.

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during SLEEP or IDLE Mode

The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to "0" and the TO flag will be set to "1". Refer to the System Start Up Time Characteristics for t_{SST} details.

WDT Time-out Reset during SLEEP or IDLE Timing Chart

Reset Initial Conditions

The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are shown in the table:

то	PDF	Reset Conditions
0	0	Power-on reset
u	u	RES/FDI pin reset during FAST or SLOW Mode operation
1	u	WDT time-out reset during FAST or SLOW Mode operation
1	1	WDT time-out reset during IDLE or SLEEP Mode operation

"u" stands for unchanged

The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs.

Item Condition after Reset				
Program Counter	Reset to zero			
Interrupts	All interrupts will be disabled			
WDT, Time Base	T, Time Base Clear after reset, WDT begins counting			
Timer Modules	Timer Modules will be turned off			
Input/Output Ports	I/O ports will be setup as inputs			
Stack Pointer	Stack Pointer will point to the top of the stack			

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects each of the microcontroller internal registers.

Rev. 1.10 49 August 18, 2020

		RES/FDI Reset	RES Reset	WDT Time-out	WDT Time-out
Register	Power On Reset	(Normal Operation)	(IDLE/SLEEP)	(Normal Operation)	(IDLE/SLEEP)
IAR0	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
MP0	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
IAR1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
MP1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
BP	000	000	000	000	uuu
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	0000 0000	0000 0000	0000 0000
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBLH	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBHP	xxxx	uuuu	uuuu	uuuu	uuuu
STATUS	00 xxxx	uu uuuu	01 uuuu	1u uuuu	11 uuuu
SCC	111 00	11100	11100	11100	uuuuu
HIRCC	0000	0000	0000	0000	uuuu
RSTFC	0 x 0 0	uuuu	uuuu	uuuu	uuuu
INTC0	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
INTC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
INTC2	00	00	00	00	uu
PA	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PAWU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
РВ	1-	1-	1-	1-	u -
PBC	1-	1-	1-	1-	u -
PBPU	0 -	0 -	0 -	0 -	u -
PAS0	00 0000	00 0000	00 0000	00 0000	uu uuuu
PAS1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
LVPUC	0	0	0	0	u
RSTC	0101 0101	0101 0101	0101 0101	0101 0101	uuuu uuuu
INTEG	0000	0000	0000	0000	uuuu
WDTC	0101 0011	0101 0011	0101 0011	0101 0011	uuuu uuuu
TBC	0000	0000	0000	0000	uuuu
PSCR	0	0	0	0	u
STMC0	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
STMC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
STMDL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
STMDH	0 0	0 0	0 0	0 0	u u
STMAL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
STMAH	0 0	0 0	00	0 0	u u
LCDC	0-00 0000	0-00 0000	0-00 0000	0-00 0000	u-uu uuuu
COMS	0000	0000	0000	0000	uuuu
FDIEG	0 0	0 0	0 0	0 0	u u
FDIR	0101 0101	0101 0101	0101 0101	0101 0101	
FDIS	x	x	x	x	x
LVRC	0110 0110	0110 0110	0110 0110	0110 0110	uuuu uuuu
LVICC	00 -000	00 -000	00 -000	00 -000	u u - u u u
EEA	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
EED	0000 0000	0000 0000	0000 0000	0000 0000	
EEC	0000	0000	0000	0000	
LEO	0000	0000	0000	0000	uuuu

Note: "-" stands for unimplemented

"u" stands for unchanged

"x" stands for unknown

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities.

The devices provide bidirectional input/output lines labeled with port names PA~PB. These I/O ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Register	Bit								
Name	7	6	5	4	3	2	1	0	
PA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	
PAC	PAC7	PAC6	PAC5	PAC4	PAC3	PAC2	PAC1	PAC0	
PAPU	PAPU7	PAPU6	PAPU5	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0	
PAWU	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0	
РВ	_	_	_	_	_	_	PB1	_	
PBC	_	_	_	_	_	_	PBC1	_	
PBPU	_	_	_	_	_	_	PBPU1	_	

I/O Logic Function Register List

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as a digital input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using the relevant pull-high registers PAPU~PBPU together with the LVPUC register, and are implemented using weak PMOS transistors. The PxPU register is used to determine whether the pull-high function is enabled or not while the LVPUC register is used to select the pull-high resistor value for low voltage power supply applications.

Note that the pull-high resistor can be controlled by the relevant pull-high control register only when the pin-shared functional pin is selected as a digital input or NMOS output. Otherwise, the pull-high resistors cannot be enabled.

PxPU Register

Bit	7	6	5	4	3	2	1	0
Name	PxPU7	PxPU6	PxPU5	PxPU4	PxPU3	PxPU2	PxPU1	PxPU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxPUn: I/O Port x Pin pull-high function control

0: Disable 1: Enable

The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A or B. However, the actual available bits for each I/O Port may be different.

Rev. 1.10 51 August 18, 2020

LVPUC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	LVPU
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

LVPU: Pull-high resistor selection when low voltage power supply

0: All pin pull high resistor is $60k\Omega$ (typ.) @ 3V

1: All pin pull high resistor is $15k\Omega$ (typ.) @ 3V

This bit is used to select the pull-high resistor value for low voltage power supply applications. The LVPU bit is only available when the corresponding pin pull-high function is enabled by setting the relevant pull-high control bit high. This bit will have no effect when the pull-high function is disabled.

Port A Wake-up

Bit 0

The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this wake-up feature using the PAWU register.

Note that the wake-up function can be controlled by the wake-up control registers only when the pin is selected as a general purpose input and the MCU enters the IDLE or SLEEP mode.

• PAWU Register

Bit	7	6	5	4	3	2	1	0
Name	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **PAWU7~PAWU0**: PA7~PA0 wake-up function control

0: Disable 1: Enable

I/O Port Control Registers

Each I/O port has its own control register known as PAC~PBC, to control the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be setup as a CMOS output. If the pin is currently setup as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin.

Rev. 1.10 52 August 18, 2020

PxC Register

Bit	7	6	5	4	3	2	1	0
Name	PxC7	PxC6	PxC5	PxC4	PxC3	PxC2	PxC1	PxC0
R/W								
POR	1	1	1	1	1	1	1	1

PxCn: I/O Port x Pin type selection

0: Output 1: Input

The PxCn bit is used to control the pin type selection. Here the "x" can be A or B. However, the actual available bits for each I/O Port may be different.

Pin-shared Function

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the desired function of the multi-function I/O pins is selected by a series of registers via the application program control.

Pin-shared Function Selection Registers

The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device can contain. However by allowing the same pins to share several different functions and providing a means of function selection, a wide range of different functions can be incorporated into even relatively small package sizes. The devices include the Port "A" Output Function Selection registers, labeled as PASO and PAS1, which can select the desired functions of the multi-function pin-shared pins.

The most important point to note is to make sure that the desired pin-shared function is properly selected and also deselected. For most pin-shared functions, to select the desired pin-shared function, the pin-shared function should first be correctly selected using the corresponding pin-shared control register. After that the corresponding peripheral functional setting should be configured and then the peripheral function can be enabled. However, a special point must be noted for some digital input pins, such as INTn, STCK, STPI, etc, which share the same pin-shared control configuration with their corresponding general purpose I/O functions when setting the relevant pin-shared control bit fields. To select these pin functions, in addition to the necessary pin-shared control and peripheral functional setup aforementioned, they must also be setup as an input by setting the corresponding bit in the I/O port control register. To correctly deselect the pin-shared function, the peripheral function should first be disabled and then the corresponding pin-shared function control register can be modified to select other pin-shared functions.

Register	Bit							
Name	7	6	5	4	3	2	1	0
PAS0	_	_	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
PAS1	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10

Pin-shared Function Selection Register List

Rev. 1.10 53 August 18, 2020

• PAS0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5~4 PAS05~PAS04: PA2 pin-shared function selection

00: PA2 01: PA2 10: PA2 11: SEG4

Bit 3~2 **PAS03~PAS02**: PA1 pin-shared function selection

00: PA1/INT0/STCK 01: PA1/INT0/STCK 10: PA1/INT0/STCK

11: SEG3

Bit 1~0 **PAS01~PAS00**: PA0 pin-shared function selection

00: PA0 01: PA0 10: PA0 11: SEG2

PAS1 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS17	PAS16	PAS15	PAS14	PAS13	PAS12	PAS11	PAS10
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS17~PAS16: PA7 pin-shared function selection

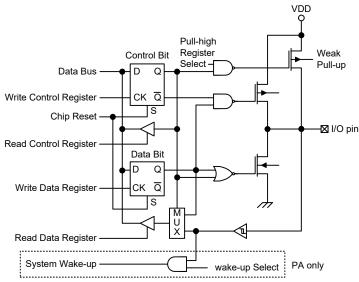
00: PA7 01: PA7 10: PA7 11: SEG7

Bit 5~4 PAS15~PAS14: PA6 pin-shared function selection

00: PA6 01: PA6 10: PA6 11: SEG6

Bit 3~2 PAS13~PAS12: PA5 pin-shared function selection

00: PA5 01: PA5 10: STPB 11: SEG5


Bit 1~0 PAS11~PAS10: PA4 pin-shared function selection

00: PA4 01: PA4 10: PA4 11: STP

I/O Pin Structures

The accompanying diagram illustrates the internal structure of the I/O logic function. As the exact logical construction of the I/O pin will differ from this drawing, it is supplied as a guide only to assist with the functional understanding of the I/O logic function. The wide range of pin-shared structures does not permit all types to be shown.

Logic Function Input/Output Structure

Programming Considerations

Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data and port control registers will be set high. This means that all I/O pins will default to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to setup some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up function. When the device is in the SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high to low transition of any of the Port A pins. Single or multiple pins on Port A can be setup to have this function.

Rev. 1.10 55 August 18, 2020

Timer Modules - TM

One of the most fundamental functions in any microcontroller device is the ability to control and measure time. To implement time related functions the devices include one Timer Module, abbreviated to the name TM. The TM is a multi-purpose timing unit and serves to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output as well as being the functional unit for the generation of PWM signals. The TM has two individual interrupts. The addition of input and output pins for the TM ensures that users are provided with timing units with a wide and flexible range of features.

The general features of the Standard type TM are described here with more detailed information provided in the Standard type TM section.

Introduction

The devices contain one Standard type TM having a reference name of STM. The common features to the Standard TM will be described in this section and the detailed operation will be described in the corresponding section. The main features of the STM are summarised in the accompanying table.

Function	STM
Timer/Counter	√
Input Capture	√
Compare Match Output	√
PWM Output	√
Single Pulse Output	√
PWM Alignment	Edge
PWM Adjustment Period & Duty	Duty or Period

STM Function Summary

TM Operation

The Standard type TM offers a diverse range of functions, from simple timing operations to PWM signal generation. The key to understanding how the TM operates is to see it in terms of a free running counter whose value is then compared with the value of pre-programmed internal comparators. When the free running counter has the same value as the pre-programmed comparator, known as a compare match situation, a TM interrupt signal will be generated which can clear the counter and perhaps also change the condition of the TM output pin. The internal TM counter is driven by a user selectable clock source, which can be an internal clock or an external pin.

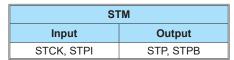
TM Clock Source

The clock source which drives the main counter in the TM can originate from various sources. The selection of the required clock source is implemented using the STCK2 \sim STCK0 bits in the STM control register. The clock source can be a ratio of the system clock f_{SYS} or the internal high clock f_{H} , the f_{SUB} clock source or the external STCK pin. The STCK pin clock source is used to allow an external signal to drive the TM as an external clock source or for event counting.

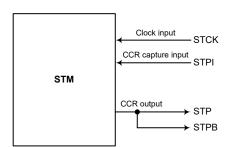
TM Interrupts

The Standard type TM has two internal interrupts, one for each of the internal comparator A or comparator P, which generate a TM interrupt when a compare match condition occurs. When a TM interrupt is generated it can be used to clear the counter and also to change the state of the TM output pin.

Rev. 1.10 56 August 18, 2020


TM External Pins

The Standard TM has one input pin, with the label STCK. The STCK input pin is essentially a clock source for the STM and is selected using the STCK2~CTCK0 bits in the STMC0 register. This external TM input pin allows an external clock source to drive the internal TM. The STCK input pin can be chosen to have either a rising or falling active edge. The STCK pin is also used as the external trigger input pin in single pulse output mode for the STM.

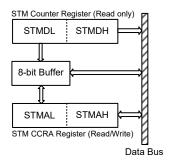

The other STM input pin, STPI pin, is the capture input pin whose active edge can be a rising edge, a falling edge or both rising and falling edges. The active edge transition type is selected using the STIO1~STIO0 bits in the STMC1 register.

The Standard TM also has two output pins, STP and STPB. The STPB is the inverted signal of the STP output. When the TM is in the Compare Match Output Mode, these pins can be controlled by the TM to switch to a high or low level or to toggle when a compare match situation occurs. The external STP and STPB output pins are also the pins where the TM generates the PWM output waveform.

As the TM input and output pins are pin-shared with other functions, the TM input or output function must first be setup using relevant pin-shared function selection register. The details of the pin-shared function selection are described in the pin-shared function section.

TM External Pins

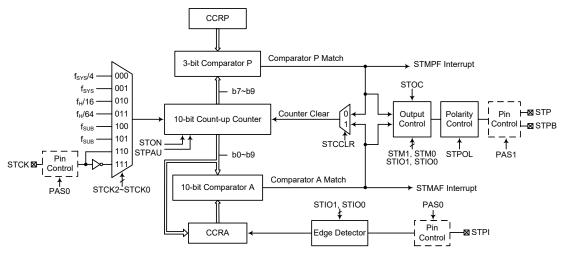
STM Function Pin Block Diagram


Programming Considerations

The TM Counter Registers, the Capture/Compare CCRA register, being 10-bit, has a low and high byte structure. The high byte can be directly accessed, but as the low byte can only be accessed via an internal 8-bit buffer, reading or writing to this register pair must be carried out in a specific way. The important point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or read operation to its corresponding high byte is executed.

As the CCRA register is implemented in the way shown in the following diagram and accessing these registers is carried out in a specific way described above, it is recommended to use the "MOV" instruction to access the CCRA low byte register, named STMAL, using the following access procedures. Accessing the CCRA low byte register without following these access procedures will result in unpredictable values.

Rev. 1.10 57 August 18, 2020



The following steps show the read and write procedures:

- · Writing Data to CCRA
 - Step 1. Write data to Low Byte STMAL
 - Note that here data is only written to the 8-bit buffer.
 - · Step 2. Write data to High Byte STMAH
 - Here data is written directly to the high byte register and simultaneously data is latched from the 8-bit buffer to the Low Byte registers.
- · Reading Data from the Counter and CCRA Registers
 - Step 1. Read data from the High Byte STMDH or STMAH
 - Here data is read directly from the High Byte register and simultaneously data is latched from the Low Byte register into the 8-bit buffer.
 - Step 2. Read data from the Low Byte STMDL or STMAL
 - This step reads data from the 8-bit buffer.

Standard Type TM – STM

The Standard Type TM contains five operating modes, which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Standard Type TM can be controlled with two external input pins and can drive two external output pins.

Note: 1. STPB is the inverse signal of STP.

2. The STM external pins are pin-shared with other functions, so before using the STM function, ensure that the pin-shared function registers have been set properly to enable the STM pin function. The STCK and STPI pins, if used, must also be set as an input by setting the corresponding bits in the port control register.

Standard Type TM Block Diagram

Rev. 1.10 58 August 18, 2020

Standard Type TM Operation

The size of Standard Type TM is 10-bit wide and its core is a 10-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP comparator is 3-bit wide whose value is compared with the highest 3 bits in the counter while the CCRA is the 10 bits and therefore compares all counter bits.

The only way of changing the value of the 10-bit counter using the application program, is to clear the counter by changing the STON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a STM interrupt signal will also usually be generated. The Standard Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control two output pins. All operating setup conditions are selected using relevant internal registers.

Standard Type TM Register Description

Overall operation of the Standard Type TM is controlled using a series of registers. A read only register pair exists to store the internal counter 10-bit value, while a read/write register pair exists to store the internal 10-bit CCRA value. The remaining two registers are control registers which setup the different operating and control modes as well as three CCRP bits.

Register	Bit										
Name	7	6	5	4	3	2	1	0			
STMC0	STPAU	STCK2	STCK1	STCK0	STON	STRP2	STRP1	STRP0			
STMC1	STM1	STM0	STIO1	STIO0	STOC	STPOL	STDPX	STCCLR			
STMDL	D7	D6	D5	D4	D3	D2	D1	D0			
STMDH	_	_	_	_	_	_	D9	D8			
STMAL	D7	D6	D5	D4	D3	D2	D1	D0			
STMAH	_	_	_	_	_	_	D9	D8			

10-bit Standard Type TM Register List

STMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	STPAU	STCK2	STCK1	STCK0	STON	STRP2	STRP1	STRP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 STPAU: STM Counter Pause control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the STM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 STCK2~STCK0: Select STM Counter clock

 $\begin{array}{c} 000: \, f_{SYS}/4 \\ 001: \, f_{SYS} \\ 010: \, f_{H}/16 \\ 011: \, f_{H}/64 \\ 100: \, f_{SUB} \\ 101: \, f_{SUB} \end{array}$

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

110: STCK rising edge clock 111: STCK falling edge clock

These three bits are used to select the clock source for the STM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_H and f_{SUB} are other internal clocks, the details of which can be found in the oscillator section.

Bit 3 STON: STM Counter On/Off control

0: Off 1: On

This bit controls the overall on/off function of the STM. Setting the bit high enables the counter to run while clearing the bit disables the STM. Clearing this bit to zero will stop the counter from counting and turn off the STM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again. If the STM is in the Compare Match Output Mode, PWM Output Mode or Single Pulse Output Mode then the STM output pin will be reset to its initial condition, as specified by the STOC bit, when the STON bit changes from low to high.

Bit 2~0 STRP2~STRP0: STM CCRP 3-bit register, compared with the STM counter bit 9~bit 7

Comparator P Match Period 000: 1024 STM clocks 001: 128 STM clocks 010: 256 STM clocks 011: 384 STM clocks 100: 512 STM clocks 101: 640 STM clocks

110: 768 STM clocks 111: 896 STM clocks

These three bits are used to setup the value on the internal CCRP 3-bit register, which are then compared with the internal counter's highest three bits. The result of this comparison can be selected to clear the internal counter if the STCCLR bit is set to zero. Setting the STCCLR bit to zero ensures that a compare match with the CCRP values will reset the internal counter. As the CCRP bits are only compared with the highest three counter bits, the compare values exist in 128 clock cycle multiples. Clearing all three bits to zero is in effect allowing the counter to overflow at its maximum value.

STMC1 Register

Bit	7	6	5	4	3	2	1	0
Name	STM1	STM0	STIO1	STIO0	STOC	STPOL	STDPX	STCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 STM1~STM0: Select STM Operating Mode

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits setup the required operating mode for the STM. To ensure reliable operation the STM should be switched off before any changes are made to the STM1 and STM0 bits. In the Timer/Counter Mode, the STM output pin state is undefined.

Bit 5~4 STIO1~STIO0: Select STM external pin function

Compare Match Output Mode

00: No change01: Output low10: Output high11: Toggle output

Rev. 1.10 60 August 18, 2020

PWM Output Mode/Single Pulse Output Mode

00: PWM output inactive state

01: PWM output active state

10: PWM output

11: Single Pulse Output

Capture Input Mode

00: Input capture at rising edge of STPI

01: Input capture at falling edge of STPI

10: Input capture at rising/falling edge of STPI

11: Input capture disabled

Timer/Counter Mode

Unused

These two bits are used to determine how the STM external pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the STM is running.

In the Compare Match Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a compare match occurs from the Comparator A. The STM output pin can be setup to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the STM output pin should be setup using the STOC bit in the STMC1 register. Note that the output level requested by the STIO1 and STIO0 bits must be different from the initial value setup using the STOC bit otherwise no change will occur on the STM output pin when a compare match occurs. After the STM output pin changes state, it can be reset to its initial level by changing the level of the STON bit from low to high.

In the PWM Output Mode, the STIO1 and STIO0 bits determine how the STM output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the STIO1 and STIO0 bits only after the STM has been switched off. Unpredictable PWM outputs will occur if the STIO1 and STIO0 bits are changed when the STM is running.

Bit 3 STOC: STM STP Output control

Compare Match Output Mode

0: Initial low

1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low

1: Active high

This is the output control bit for the STM output pin. Its operation depends upon whether STM is being used in the Compare Match Output Mode or in the PWM Output Mode/Single Pulse Output Mode. It has no effect if the STM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the STM output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the STM output pin when the STON bit changes from low to high.

Bit 2 STPOL: STM STP Output polarity control

0: Non-invert

1: Invert

This bit controls the polarity of the STP output pin. When the bit is set high the STM output pin will be inverted and not inverted when the bit is zero. It has no effect if the STM is in the Timer/Counter Mode.

Bit 1 STDPX: STM PWM duty/period control

0: CCRP – period; CCRA – duty 1: CCRP – duty; CCRA – period

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

This bit determines which of the CCRA and CCRP registers are used for period and duty control of the PWM waveform.

Bit 0 STCCLR: STM Counter Clear condition selection

0: STM Comparator P match1: STM Comparator A match

This bit is used to select the method which clears the counter. Remember that the Standard Type TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the STCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The STCCLR bit is not used in the PWM Output, Single Pulse Output or Capture Input Mode.

STMDL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D7~D0**: STM Counter Low Byte Register bit $7 \sim$ bit 0 STM 10-bit Counter bit $7 \sim$ bit 0

STMDH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R	R
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 **D9~D8**: STM Counter High Byte Register bit $1 \sim$ bit 0 STM 10-bit Counter bit $9 \sim$ bit 8

• STMAL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim 0$ **D7\simD0**: STM CCRA Low Byte Register bit $7\sim$ bit 0 STM 10-bit CCRA bit $7\sim$ bit 0

STMAH Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	D9	D8
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit $1\sim 0$ **D9\simD8**: STM CCRA High Byte Register bit $1\sim$ bit 0

STM 10-bit CCRA bit 9 ~ bit 8

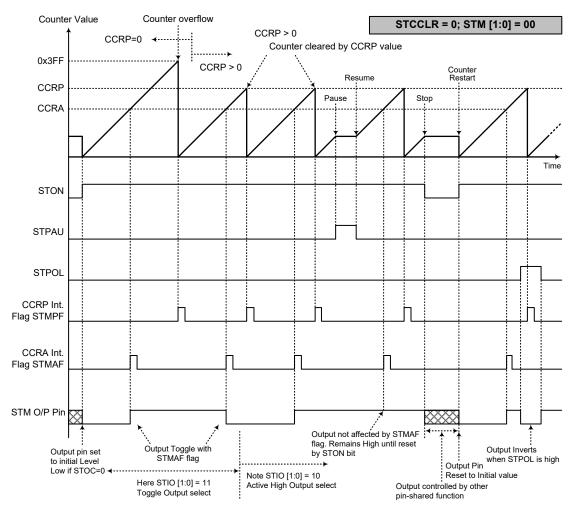
Rev. 1.10 62 August 18, 2020

Standard Type TM Operation Modes

The Standard Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the STM1 and STM0 bits in the STMC1 register.

Compare Match Output Mode

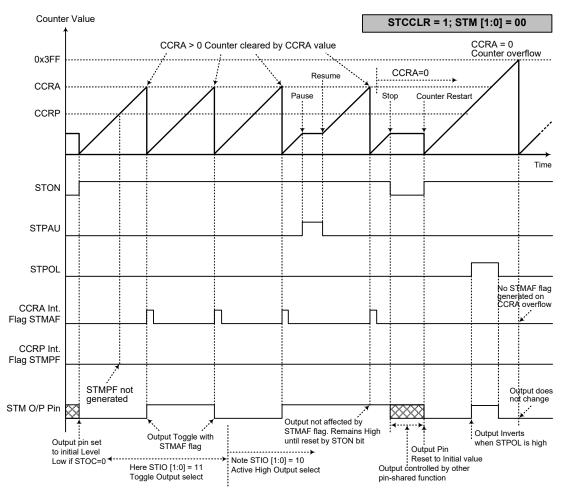
To select this mode, bits STM1 and STM0 in the STMC1 register, should be set to 00 respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the STCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both STMAF and STMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.


If the STCCLR bit in the STMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the STMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when STCCLR is high no STMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA cannot be cleared to "0".

If the CCRA bits are all zero, the counter will overflow when it reaches its maximum 3FF Hex, value, however here the STMAF interrupt request flag will not be generated.

As the name of the mode suggests, after a comparison is made, the STM output pin, will change state. The STM output pin condition however only changes state when a STMAF interrupt request flag is generated after a compare match occurs from Comparator A. The STMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the STM output pin. The way in which the STM output pin changes state are determined by the condition of the STIO1 and STIO0 bits in the STMC1 register. The STM output pin can be selected using the STIO1 and STIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the STM output pin, which is setup after the STON bit changes from low to high, is setup using the STOC bit. Note that if the STIO1 and STIO0 bits are zero then no pin change will take place.

Rev. 1.10 63 August 18, 2020


Compare Match Output Mode - STCCLR=0

Note: 1. With STCCLR=0 a Comparator P match will clear the counter

- 2. The STM output pin is controlled only by the STMAF flag
- 3. The output pin is reset to its initial state by a STON bit rising edge

Rev. 1.10 64 August 18, 2020

Compare Match Output Mode - STCCLR=1

Note: 1. With STCCLR=1 a Comparator A match will clear the counter

- 2. The STM output pin is controlled only by the STMAF flag
- 3. The output pin is reset to its initial state by a STON bit rising edge
- 4. A STMPF flag is not generated when STCCLR=1

HT69F3742/HT69F3742L Ultra-Low Voltage & Low Current Flash MCU with LCD Driver

Timer/Counter Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 11 respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the STM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the STM output pin is not used in this mode, the pin can be used as a normal I/O pin or other pin-shared function.

PWM Output Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 10 respectively. The PWM function within the STM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the STM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output Mode, the STCCLR bit has no effect as the PWM period. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. Which register is used to control either frequency or duty cycle is determined using the STDPX bit in the STMC1 register. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The STOC bit in the STMC1 register is used to select the required polarity of the PWM waveform while the two STIO1 and STIO0 bits are used to enable the PWM output or to force the STM output pin to a fixed high or low level. The STPOL bit is used to reverse the polarity of the PWM output waveform.

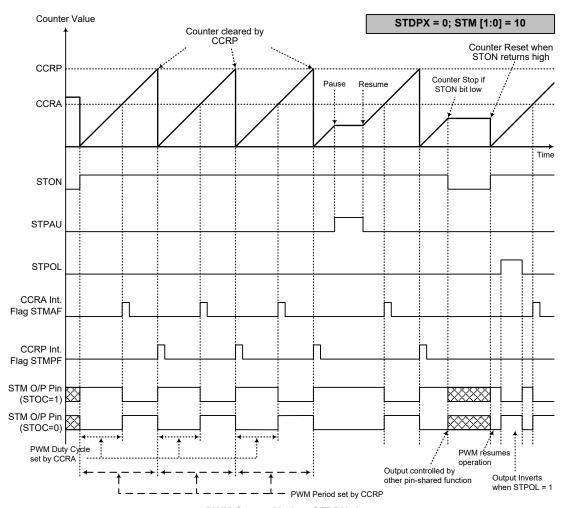
• 10-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=0

CCRP	1~7	0		
Period	CCRP×128	1024		
Duty	CCRA			

If f_{SYS}=8MHz, STM clock source is f_{SYS}/4, CCRP=2 and CCRA=128,

The STM PWM output frequency= $(f_{SYS}/4)/(2\times128)=f_{SYS}/1024=7.8125$ kHz, duty= $128/(2\times128)=50\%$.

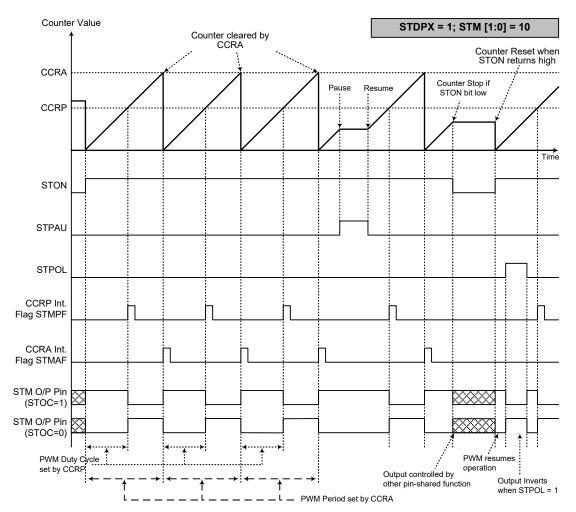
If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.


• 10-bit STM, PWM Output Mode, Edge-aligned Mode, STDPX=1

CCRP	1~7	0		
Period	CCRA			
Duty	CCRP×128	1024		

The PWM output period is determined by the CCRA register value together with the STM clock while the PWM duty cycle is defined by the CCRP register value.

Rev. 1.10 66 August 18, 2020



PWM Output Mode - STDPX=0

Note: 1. Here STDPX=0 – Counter cleared by CCRP

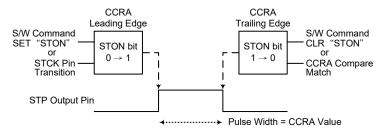
- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues running even when STIO[1:0]=00 or 01
- 4. The STCCLR bit has no influence on PWM operation

PWM Output Mode - STDPX=1

Note: 1. Here STDPX=1 - Counter cleared by CCRA

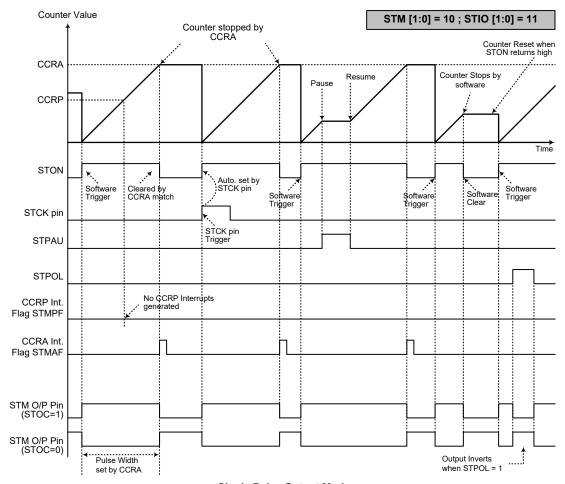
- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues even when STIO[1:0]=00 or 01
- 4. The STCCLR bit has no influence on PWM operation

Rev. 1.10 68 August 18, 2020



Single Pulse Output Mode

To select this mode, bits STM1 and STM0 in the STMC1 register should be set to 10 respectively and also the STIO1 and STIO0 bits should be set to 11 respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the STM output pin.


The trigger for the pulse output leading edge is a low to high transition of the STON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the STON bit can also be made to automatically change from low to high using the external STCK pin, which will in turn initiate the Single Pulse output. When the STON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The STON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the STON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.

However a compare match from Comparator A will also automatically clear the STON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a STM interrupt. The counter can only be reset back to zero when the STON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The STCCLR and STDPX bits are not used in this Mode.

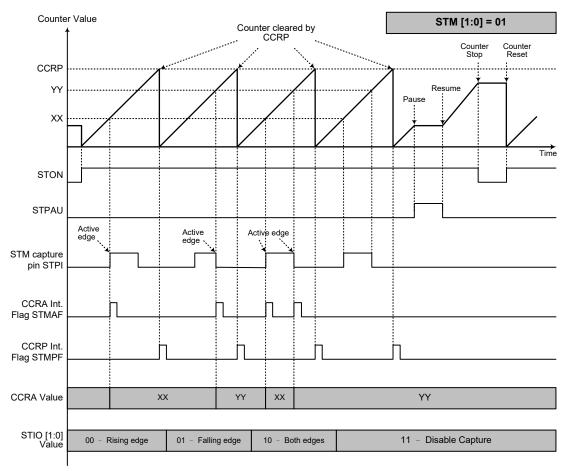
Single Pulse Generation

Single Pulse Output Mode

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse triggered by the STCK pin or by setting the STON bit high
- 4. A STCK pin active edge will automatically set the STON bit high
- 5. In the Single Pulse Output Mode, STIO[1:0] must be set to "11" and cannot be changed

Rev. 1.10 70 August 18, 2020


Capture Input Mode

To select this mode bits STM1 and STM0 in the STMC1 register should be set to 01 respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the STPI pin, whose active edge can be a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the STIO1 and STIO0 bits in the STMC1 register. The counter is started when the STON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the STPI pin the present value in the counter will be latched into the CCRA registers and a STM interrupt generated. Irrespective of what events occur on the STPI pin the counter will continue to free run until the STON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, a STM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The STIO1 and STIO0 bits can select the active trigger edge on the STPI pin to be a rising edge, falling edge or both edge types. If the STIO1 and STIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the STPI pin, however it must be noted that the counter will continue to run. The STCCLR and STDPX bits are not used in this Mode.

Rev. 1.10 71 August 18, 2020

Capture Input Mode

Note: 1. STM[1:0]=01 and active edge set by the STIO[1:0] bits

- 2. A STM Capture input pin active edge transfers the counter value to CCRA
- 3. STCCLR and STDPX bits not used
- 4. No output function STOC and STPOL bits are not used
- 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero.

Rev. 1.10 72 August 18, 2020

LCD Driver

For large volume applications, which incorporate an LCD in their design, the use of a custom display rather than a more expensive character based display reduces costs significantly. However, the corresponding COM and SEG signals required, which vary in both amplitude and time, to drive such a custom display require many special considerations for proper LCD operation to occur. These devices contain an LCD Driver function, which with their internal LCD signal generating circuitry and various options will automatically generate these time and amplitude varying signals to provide a means of direct driving and easy interfacing to a range of custom LCDs.

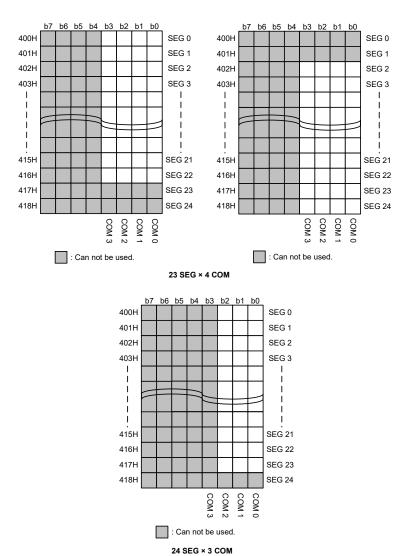
These devices include a wide range of options to enable LCD displays of various types to be driven. The table shows the range of options available across the devices range.

Driver No.	Duty	Bias Level	Bias Type	Waveform Type	
24×3	1/3	1/2	China	A or B	
23×4	1/4		C type		

LCD Driver Output Selection

LCD Display Memory

An area of Data Memory is especially reserved for use for the LCD display data. This data area is known as the LCD Display Memory. Any data written here will be automatically read by the internal display driver circuits, which will in turn automatically generate the necessary LCD driving signals. Therefore any data written into this Memory will be immediately reflected into the actual display connected to the microcontroller.


These devices provide an area of embedded data memory for the LCD display. This area is located at 00H to 18H in Bank 4 of the Data Memory. To access the LCD Display Memory therefore requires first that Bank 4 is selected by writing a value of 04H to the BP register. After this, the memory can then be accessed by using indirect addressing through the use of MP1. With Bank 4 selected, then using MP1 to read or write to the memory area, from 00H to 18H, will result in operations to the LCD memory. Directly addressing the Display Memory is not applicable and will result in a data access to the Bank 0 General Purpose Data Memory.

The LCD display can be read and written to only by indirect and addressing mode using MP1. When data is written into the display data area, it is automatically read by the LCD driver which then generates the corresponding LCD driving signals. To turn the display on or off, a "1" or a "0" is written to the corresponding bit of the display memory, respectively. The figure illustrates the mapping between the display memory and LCD pattern for the devices.

The unimplemented LCD RAM bits cannot be used as general purpose RAM for application. For example, if the LCD duty is selected as 1/4 duty (COM0~COM3 are used), the COMS01~COMS00 bits in the COMS register will be read as 00B only.

Rev. 1.10 73 August 18, 2020

LCD Clock Source

The LCD clock is sourced from the internal clock signal, f_{LIRC} , divided by 8, using an internal divider circuit. For proper LCD operation, this arrangement is provided to generate an ideal LCD clock frequency of 4kHz.

LCD Memory Map

C Type LCD Pump Clock Source

The C type LCD pump clock source is from the internal clock signal, f_{LCDP} , which divided by an internal divider circuit. The divider value is selected by the LCDPCK2~LCDPCK0 bits in the LCDC register.

LCD Registers

A control register LCDC is used to control the various setup features of the LCD Driver. The TYPE bit in the LCDC register is used to select whether Type A or Type B LCD control signals are used. The DTYC bit is used for the duty selection. The LCDP bit in the LCDC register are used to select

Rev. 1.10 74 August 18, 2020

the power source to supply the LCD panel with the correct bias voltages. The LCDPCK2~LCDPCK0 bits in the LCDC register is used to select the C type LCD pump clock divider.

Register					Bit			
Name	7	6	5	4	3	2	1	0
LCDC	TYPE	_	DTYC	LCDP	LCDPCK2	LCDPCK1	LCDPCK0	LCDEN
COMS	_	_	_	_	COMS03	COMS02	COMS01	COMS00

LCD Register List

LCDC Register

Bit	7	6	5	4	3	2	1	0
Name	TYPE	_	DTYC	LCDP	LCDPCK2	LCDPCK1	LCDPCK0	LCDEN
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	_	0	0	0	0	0	0

Bit 7 TYPE: LCD waveform type selection

0: Type A 1: Type B

Bit 6 Unimplemented, read as "0"

Bit 5 **DTYC**: LCD duty selection

0: 1/3 Duty 1: 1/4 Duty

If the DTYC bit is cleared to zero, the COM3 pin will be configured as SEG23 pin using the COMS register.

Bit 4 LCDP: LCD power source selection for C type LCD

0: The power source is from internal $V_B=V_{DD}$

1: The power source is from internal $V_B=V_{REFIN}$ (about 1.5V)

Bit 3~1 LCDPCK2~LCDPCK0: C type LCD pump clock divider

 $\begin{array}{l} 000:\ 250\text{Hz}\ (f_{LIRC}/128,\ f_{LCDP} = f_{LIRC}/8 = 4k\text{Hz}) \\ 001:\ 500\text{Hz}\ (f_{LIRC}/64,\ f_{LCDP} = f_{LIRC}/8 = 4k\text{Hz}) \\ 010:\ 1k\text{Hz}\ (f_{LIRC}/32,\ f_{LCDP} = f_{LIRC}/8 = 4k\text{Hz}) \\ 011:\ 2k\text{Hz}\ (f_{LIRC}/16,\ f_{LCDP} = f_{LIRC}/8 = 4k\text{Hz}) \\ 100:\ 4k\text{Hz}\ (f_{LIRC}/8,\ f_{LCDP} = f_{LIRC}/4 = 8k\text{Hz}) \\ 101:\ 8k\text{Hz}\ (f_{LIRC}/4,\ f_{LCDP} = f_{LIRC}/2 = 16k\text{Hz}) \\ 110:\ 16k\text{Hz}\ (f_{LIRC}/2,\ f_{LCDP} = f_{LIRC} = 32k\text{Hz}) \\ \end{array}$

111: 16kHz ($f_{LIRC}/2$, $f_{LCDP}=f_{LIRC}=32kHz$)

Bit 0 LCDEN: LCD enable control

0: Disable 1: Enable

In the FAST, SLOW, IDLE or SLEEP Mode, the LCD on/off function can be controlled by this bit.

COMS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	COMS03	COMS02	COMS01	COMS00
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 COMS03: SEG1 pin-shared function selection

0: SEG1 1: COM3

Bit 2 COMS02: SEG0 pin-shared function selection

0: SEG0 1: COM2

Bit 1 COMS01: COM3 pin-shared function selection

0: COM3 1: SEG23

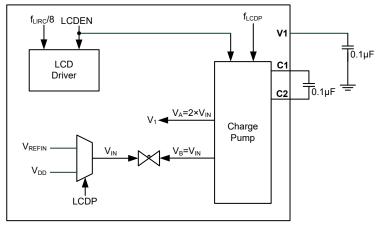
Bit 0 COMS00: COM2 pin-shared function selection

0: COM2 1: SEG24

LCD Voltage Source and Biasing

The time and amplitude varying signals generated by the LCD Driver function require the generation of several voltage levels for their operation. The devices use the C type biasing.

The LCD voltage source is derived from the internal voltage V_{DD} or V_{REFIN} to generate the required biasing voltages. The C type biasing scheme uses an internal charge pump circuit can generate voltages higher than what is supplied. This feature is useful in applications where the microcontroller supply voltage is less than the supply voltage required by the LCD. The charge pump clock divider is selected using the LCDPCK2~LCDPCK0 bits in the LCDC register. An additional charge pump capacitor must also be connected between pins C1 and C2 to generate the necessary voltage levels.


Three internally generated voltage levels V_{SS} , V_{A} and V_{B} are utilised. As the power source is from V_{DD} or V_{REFIN} by configuring the LCDP bit.

When the power source is from V_{DD} , the voltage V_A is generated internally and has a value of $2 \times V_{DD}$. The V_B has a value of V_{DD} , and the V1 pin has the same voltage as the V_A .

When the power source is from V_{REFIN} , the voltage V_A is generated internally and has a value of $V_{REFIN} \times 2$. The V_B will have a value equal to V_{REFIN} , and the V1 pin has the same voltage as V_A .

LCD Power Supply	V _A Voltage	V _B Voltage		
VDD on VB	VDD×2	VDD		
VREFIN on VB	VREFIN×2	VREFIN		

C Type 1/2 Bias Voltage Scheme

Note: 1. The internal V₁ pump voltage is the LCD maximum voltage.

- 2. The V_{REFIN} voltage is 1.5V with a tolerance to within $\pm 10\%$. Only if the V_{DD} voltage is greater than 1.8V, the V_{REFIN} of 1.5V can be provided.
- 3. The devices power supply voltage V_{DD} must not exceed the maximum voltage of the V1 pin.

C Type Power Source from Internal Power

Rev. 1.10 76 August 18, 2020

LCD Reset Function

The LCD has an internal reset function. Clearing the LCDEN bit to zero will also reset the LCD function.

When the LCDEN bit is set to 1 to enable the LCD driver and then an MCU reset occurs, the LCD driver will be reset and the COM and SEG outputs will be in a floating state during the MCU reset duration. The reset operation will take a time of $t_{RSTD}+t_{SST}$. Refer to the System Start Up Time Characteristics for t_{RSTD} and t_{RSTD} details.

MCU Reset	LCDEN	LCD Reset	COM & SEG Voltage Level
No	1	No	Normal Operation
No	0	Yes	Low
Yes	х	Yes	Floating

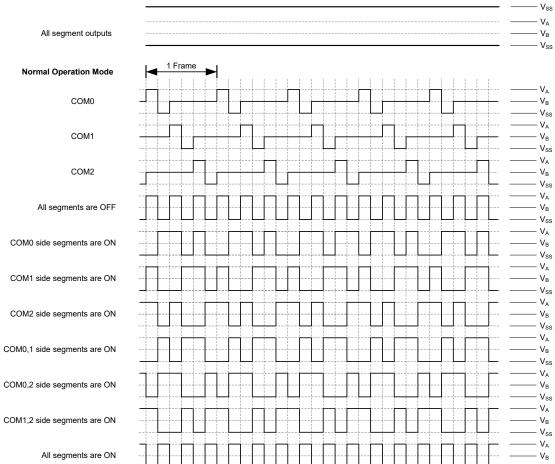
Note: 1. The Watchdog time-out reset in the IDLE or SLEEP Mode is excluded from the MCU Reset conditions.

2. "x": Don't care

LCD Reset Status

LCD Driver Output

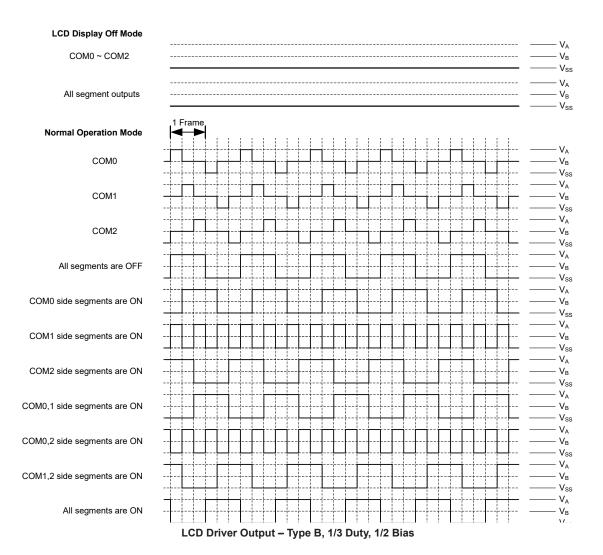
The number of COM and SEG outputs supplied by the LCD driver, as well as its wave type selections, is dependent upon how the LCD control bits are programmed.

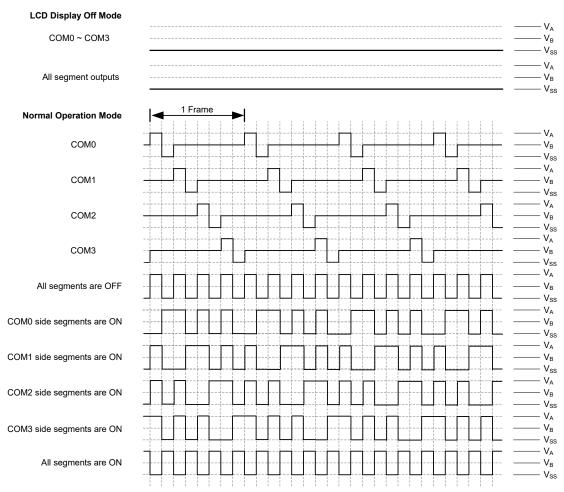

The nature of Liquid Crystal Displays require that only AC voltages can be applied to their pixels as the application of DC voltages to LCD pixels may cause permanent damage. For this reason the relative contrast of an LCD display is controlled by the actual RMS voltage applied to each pixel, which is equal to the RMS value of the voltage on the COM pin minus the voltage applied to the SEG pin. This differential RMS voltage must be greater than the LCD saturation voltage for the pixel to be on and less than the threshold voltage for the pixel to be off.

The requirement to limit the DC voltage to zero and to control as many pixels as possible with a minimum number of connections requires that both a time and amplitude signal is generated and applied to the application LCD. These time and amplitude varying signals are automatically generated by the LCD driver circuits in the microcontroller. What is known as the duty determines the number of common lines used, which are also known as backplanes or COMs. For example, the duty is 1/3 and equates to a COM number of 3, therefore defines the number of time divisions within each LCD signal frame. Two types of signal generation are also provided, known as Type A and Type B, the required type is selected via the TYPE bit in the LCDC register. Type B offers lower frequency signals, however lower frequencies may introduce flickering and influence display clarity.

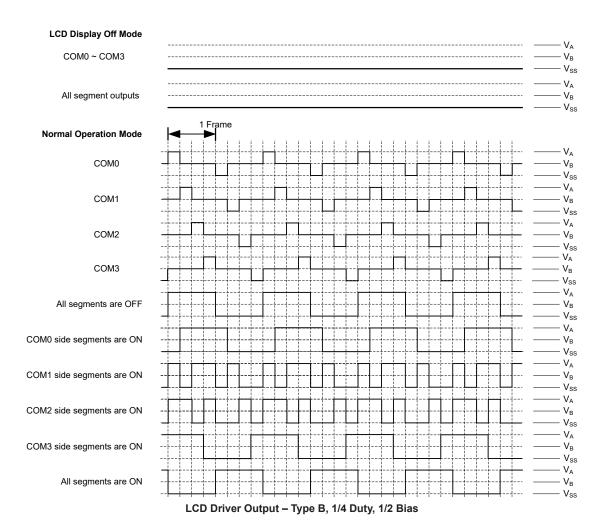
Rev. 1.10 77 August 18, 2020

3-COM, 1/2 Bias


LCD Display Off Mode COM0 ~ COM2


LCD Driver Output - Type A, 1/3 Duty, 1/2 Bias

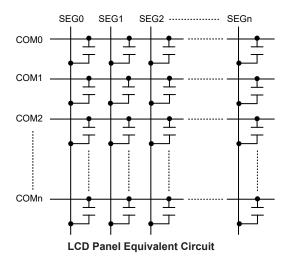
Rev. 1.10 78 August 18, 2020


4-COM, 1/2 Bias

LCD Driver Output - Type A, 1/4 Duty, 1/2 Bias

Rev. 1.10 80 August 18, 2020

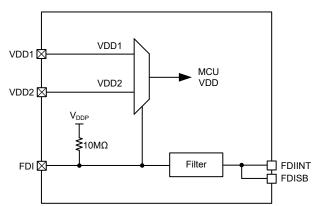
Programming Considerations


Certain precautions must be taken when programming the LCD. One of these is to ensure that the LCD Memory is properly initialised after the microcontroller is powered on. Like the General Purpose Data Memory, the contents of the LCD Memory are in an unknown condition after power-on. As the contents of the LCD Memory will be mapped into the actual display, it is important to initialise this memory area into a known condition soon after applying power to obtain a proper display pattern.

Consideration must also be given to the capacitive load of the actual LCD used in the application. As the load presented to the microcontroller by LCD pixels can be generally modeled as mainly capacitive in nature, it is important that this is not excessive, a point that is particularly true in the case of the COM lines which may be connected to many LCD pixels. The accompanying diagram depicts the equivalent circuit of the LCD.

One additional consideration that must be taken into account is what happens when the microcontroller enters the IDLE or SLEEP Mode. The LCDEN control bit in the LCDC0 register permits the display to be powered off to reduce power consumption. If this bit is zero, the driving signals to the display will cease, producing a blank display pattern but reducing any power consumption associated with the LCD.

After Power-on, note that as the LCDEN bit is cleared to zero, the display function will be disabled.



Power Switch

The devices contain a power switch function, which is used to configure the VDD1 or VDD2 pin as MCU power source. When the FDI pin is high or is floating, and it will connect an internal pull-high resistor to the V_{DDP} , the VDD1 pin can be used for MCU power source. When the FDI pin is low, the VDD2 pin can be used for MCU power source.

The FDI pin state can be read from the FDISB bit. The power switch function has its own interrupt, which can detect whether the VDD2 pin is used for MCU power supply by interrupt trigger, such feature can be applied to high current operations, such as switching the HIRC operation instruction or writting data to EEPROM, etc. For NFC application, the interrupt trigger edge can be configured to be falling edge.

Power Switch Function Block Diagram

Note: 1. The internal core and I/O ports are powered by V_{DD} .

- 2. When the FDI pin is high or is floating, and the V_{DD1} voltage is greater than the V_{DD2} voltage, the SW1 is on. When the FDI pin is low, the SW2 is on.
- 3. If the FDIE7~FDIE0 bits are set to any other values, other than 10101010B, then when a rising edge trigger appears on the FDI pin and the HIRC oscillator is enabled, the microcontroller will be reset.
- 4. The FDI pin is connected to external control signal such as the FD pin with open drain output in NFC Tag IC.

Rev. 1.10 82 August 18, 2020

Take solar energy and NFC Tag IC energy as example

VDD1 for Solar Energy	VDD2 for NFC Energy	MCU Power
Off	Off	Off
On	Off	VDD1
Off	On (FD=0)	VDD2
On	On (FD=0)	VDD2

Note: 1. The FD is short for the Field Detector, and the FD pin is selected as NMOS output in NFC Tag IC. However, the FDI pin is for MCU.

Power Switch Function Registers

The whole power switch function is controlled by a series of registers. There is an FDIEG register to setup the FDI interrupt trigger edge type. The FDIR register is used for the power switch function enable/ disable control and reset MCU operation. The FDIS register is used to read the FDI pin input state.

Register	Bit							
Name	7	6	5	4	3	2	1	0
FDIEG	_	_	_	_	_	_	FDIS1	FDIS0
FDIR	FDIE7	FDIE6	FDIE5	FDIE4	FDIE3	FDIE2	FDIE1	FDIE0
FDIS	_	_	_	_	_	_	_	FDISB

Power Switch Function Register List

FDIEG Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	FDIS1	FDIS0
R/W	_	_	_	_	_	_	R/W	R/W
POR	_	_	_	_	_	_	0	0

Bit 7~2 Unimplemented, read as "0"

Bit 1~0 FDIS1~FDIS0: External edge control for FDI pin

00: Disable

01: Rising edge trigger10: Falling edge trigger

11: Rising and falling edges trigger

• FDIR Register

Bit	7	6	5	4	3	2	1	0
Name	FDIE7	FDIE6	FDIE5	FDIE4	FDIE3	FDIE2	FDIE1	FDIE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	1	0	1

Bit 7~0 **FDIE7~FDIE0**: Power switch function software control

10101010B: Disable Other values: Enable

If the FDIE7~FDIE0 bits are set to any other values, other than 10101010B, then when a rising edge trigger appears on the FDI pin and the HIRC oscillator is enabled, the microcontroller will be reset, the reset operation will be activated after a delay time, t_{RSTD}.

^{2.} The NFC induced voltage is determined by the coil size and distance.

FDIS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	FDISB
R/W	_	_	_	_	_	_	_	R
POR	_	_	_	_	_	_	_	Х

Bit 7~1 Unimplemented, read as "0" **FDISB**: FDI pin input state

0: The FDI pin is high 1: The FDI pin is low

Low Voltage Detector - LVD

The devices both have a Low Voltage Detector function, also known as LVD. This enabled the device to monitor the power supply voltage, VDD, and provide a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability of generating an interrupt signal.

LVD Register

The Low Voltage Detector function is controlled using a single register with the name LVDC. Three bits in this register, VLVD2 \sim VLVD0, are used to select one of eight fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications.

LVDC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	LVDO	LVDEN	_	VLVD2	VLVD1	VLVD0
R/W	_	_	R	R/W	_	R/W	R/W	R/W
POR	_	_	0	0	_	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 LVDO: LVD output flag

0: No Low Voltage Detected

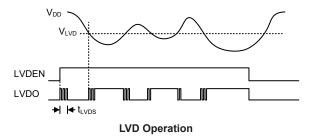
1: Low Voltage Detected

Bit 4 LVDEN: Low voltage detector enable control

0: Disable 1: Enable

Bit 3 Unimplemented, read as "0"

Bit 2~0 VLVD2~VLVD0: LVD voltage selection


000: 1.8V 001: 2.0V 010: 2.4V 011: 2.7V 100: 3.0V 101: 3.3V 110: 3.6V 111: 4.0V

Rev. 1.10 84 August 18, 2020

LVD Operation

The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level stored in the LVDC register. This has a range of between 1.8V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. The Low Voltage Detector function is supplied by a reference voltage which will be automatically enabled. When the device enters the SLEEP Mode, the low voltage detector will automatically be disabled even if the LVDEN bit is high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions.

The Low Voltage Detector also has its own interrupt which is contained within one of the Multi-function interrupts, providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt will only be generated after a delay of t_{LVD} after the LVDO bit has been set high by a low voltage condition. When the device is powered down the Low Voltage Detector will remain active if the LVDEN bit is high. In this case, the LVF interrupt request flag will be set, causing an interrupt to be generated if V_{DD} falls below the preset LVD voltage. This will cause the device to wake-up from the IDLE Mode. However, if the Low Voltage Detector wake up function is not required, then the LVF flag should be first set high before the device enters the IDLE Mode.

Interrupts

Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a Timer Module requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to their respective needs. The devices contain several external interrupt and internal interrupt functions. The external interrupt is generated by the action of the external INT0 and INT1 pins, while the internal interrupts are generated by various internal functions such as Timer Module, Time Base, and the EEPROM write operation, etc.

Interrupt Registers

Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the application program, is controlled by a series of registers, located in the Special Purpose Data Memory, as shown in the accompanying table. The interrupt registers fall into two categories. The first is the INTC0~INTC2 registers which setup the primary interrupts, the second is an INTEG register to setup the external interrupt trigger edge type.

Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag.

Rev. 1.10 85 August 18, 2020

Function	Enable Bit	Request Flag	Notes
Global	EMI	_	_
INTn Pin	INTnE	INTnF	n=0~1
Time Base	TBE	TBF	_
FDI	FDIE	FDIF	_
LVD	LVE	LVF	_
EEPROM	DEE	DEF	_
Timer Module	STMAE	STMAF	_
Timer wodule	STMPE	STMPF	_

Interrupt Register Bit Naming Conventions

Register	Bit							
Name	7	6	5	4	3	2	1	0
INTEG	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0
INTC0	_	TBF	INT1F	INT0F	TBE	INT1E	INT0E	EMI
INTC1	FDIF	DEF	STMAF	STMPF	FDIE	DEE	STMAE	STMPE
INTC2	_	_	_	LVF	_	_	_	LVE

Interrupt Register List

• INTEG Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	INT1S1	INT1S0	INT0S1	INT0S0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 **INT1S1~INT1S0**: Interrupt edge control for INT1 pin

00: Disable

01: Rising edge

10: Falling edge

11: Rising and falling edges

Bit 1~0 INT0S1~INT0S0: Interrupt edge control for INT0 pin

00: Disable

01: Rising edge

10: Falling edge

11: Rising and falling edges

• INTC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	TBF	INT1F	INT0F	TBE	INT1E	INT0E	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 TBF: Time Base interrupt request flag

0: No request1: Interrupt request

Bit 5 INT1F: INT1 interrupt request flag

0: No request1: Interrupt request

Bit 4 INT0F: INT0 interrupt request flag

0: No request1: Interrupt request

Bit 3 TBE: Time Base interrupt control

0: Disable 1: Enable

Bit 2 **INT1E**: INT1 interrupt control

0: Disable 1: Enable

Bit 1 **INT0E**: INT0 interrupt control

0: Disable 1: Enable

Bit 0 **EMI**: Global Interrupt Control

0: Disable 1: Enable

• INTC1 Register

Bit	7	6	5	4	3	2	1	0
Name	FDIF	DEF	STMAF	STMPF	FDIE	DEE	STMAE	STMPE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 FDIF: FDI interrupt request flag

0: No request1: Interrupt request

Bit 6 **DEF**: Data EEPROM interrupt request flag

0: No request1: Interrupt request

Bit 5 STMAF: STM comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 4 STMPF: STM comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 3 **FDIE**: FDI interrupt control

0: Disable 1: Enable

Bit 2 **DEE**: Data EEPROM interrupt control

0: Disable 1: Enable

Bit 1 STMAE: STM comparator A match interrupt control

0: Disable 1: Enable

Bit 0 STMPE: STM comparator P match interrupt control

0: Disable 1: Enable

• INTC2 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	LVF	_	_	_	LVE
R/W	_	_	_	R/W	_	_	_	R/W
POR	_	_	_	0	_	_	_	0

Bit 7~5 Unimplemented, read as "0"

Bit 4 LVF: LVD Interrupt request flag

0: No request1: Interrupt request

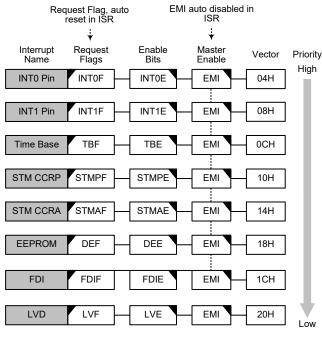
Bit 3~1 Unimplemented, read as "0"

Bit 0 LVE: LVD Interrupt control

0: Disable1: Enable

Interrupt Operation

When the conditions for an interrupt event occur, such as a TM Comparator P or Comparator A match etc, the relevant interrupt request flag will be set. Whether the request flag actually generates a program jump to the relevant interrupt vector is determined by the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated and the program will not jump to the relevant interrupt vector. The global interrupt enable bit, if cleared to zero, will disable all interrupts.


When an interrupt is generated, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector. The instruction at this vector will usually be a "JMP" which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a "RETI", which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the accompanying diagrams with their order of priority. Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit, EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded.

If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode.

Rev. 1.10 88 August 18, 2020

Interrupt Structure

External Interrupts

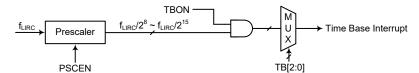
The external interrupts are controlled by signal transitions on the pins INT0 and INT1. An external interrupt request will take place when the external interrupt request flags, INT0F~INT1F, are set, which will occur when a transition, whose type is chosen by the edge select bits, appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and respective external interrupt enable bit, INT0E~INT1E, must first be set. Additionally the correct interrupt edge type must be selected using the INTEG register to enable the external interrupt function and to choose the trigger edge type. As the external interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if their external interrupt enable bit in the corresponding interrupt register has been set and the external interrupt pin is selected by the corresponding pin-shared function selection bits. The pin must also be setup as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full and the correct transition type appears on the external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flags, INT0F~INT1F, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selections on the external interrupt pins will remain valid even if the pin is used as an external interrupt input.

The INTEG register is used to select the type of active edge that will trigger the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt function.

Timer Module Interrupts

The STM has two interrupts, CCRP and CCRA interrupts, each of which has its own interrupt vector. There are two interrupt request flags STMPF and STMAF and two enable bits STMPE and STMAE. A STM interrupt request will take place when any of the STM request flags is set, a situation which occurs when a STM comparator P or comparator A match situation happens.

Rev. 1.10 89 August 18, 2020



To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the respective STM Interrupt enable bit, STMAE or STMPE, must first be set. When the interrupt is enabled, the stack is not full and a STM comparator match situation occurs, a subroutine call to the relevant STM CCRA or CCRP Interrupt vector location, will take place. When the STM interrupt is serviced, the EMI bit will be automatically cleared to disable other interrupts, the STM interrupt request flag will will be also automatically cleared.

Time Base Interrupt

The function of the Time Base Interrupt is to provide regular time signal in the form of an internal interrupt. It is controlled by the overflow signal from its internal timer. When this happens its interrupt request flag, TBF, will be set. To allow the program to branch to its respective interrupt vector addresses, the global interrupt enable bit, EMI and Time Base enable bit, TBE, must first be set. When the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to its respective vector location will take place. When the interrupt is serviced, the interrupt request flag, TBF, will be automatically reset and the EMI bit will be cleared to disable other interrupts.

The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Its clock source, f_{PSC} , originates from the internal clock source f_{LIRC} and then passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TBC register to obtain longer interrupt periods whose value ranges.

Time Base Interrupt

PSCR Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	PSCEN
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

Bit 0 **PSCEN**: Prescaler clock enable control

0: Disable 1: Enable

This PSCEN bit is the Prescaler clock enable or disable control bit. When the Prescale clock is disabled, it can reduce extra power consumption.

• TBC Register

Bit	7	6	5	4	3	2	1	0
Name	TBON	_	_	_	_	TB2	TB1	TB0
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TBON**: Time Base Enable Control

0: Disable 1: Enable

Bit 6~3 Unimplemented, read as "0"

Rev. 1.10 90 August 18, 2020

Bit 2~0 **TB2~TB0**: Time Base time-out period selection 000: 28/f_{LIRC}

001: 2⁹/f_{LIRC} 010: 2¹⁰/f_{LIRC} 011: 2¹¹/f_{LIRC} 100: 2¹²/f_{LIRC} 101: 2¹³/f_{LIRC} 110: 2¹⁴/f_{LIRC}

110. 2 / ILIRC 111: $2^{15}/f_{LIRC}$

EEPROM Interrupt

An EEPROM Interrupt request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs when an EEPROM Write cycle ends. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and EEPROM Interrupt enable bit, DEE, must first be set. When the interrupt is enabled, the stack is not full and an EEPROM Write cycle ends, a subroutine call to the EEPROM Interrupt vector will take place. When the EEPROM Interface Interrupt is serviced, the interrupt request flag, DEF, will be automatically reset and the EMI bit will be cleared to disable other interrupts.

FDI Interrupt

An FDI Interrupt will take place when the FDI Interrupt request flag, FDIF, is set, which occurs when a transition, whose type is chosen by the edge select bits, appears on the FDI pin. Additionally the correct interrupt edge type must be selected using the FDIEG register to enable the FDI interrupt function and to choose the trigger edge type. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and FDI Interrupt enable bit, FDIE, must first be set. When the interrupt is enabled, the stack is not full and the correct transition type appears on the FDI pin, a subroutine call to the respective FDI Interrupt vector, will take place. When the FDI Interrupt is serviced, the FDI interrupt flag will be automatically cleared and the EMI bit will be also automatically cleared to disable other interrupts.

LVD Interrupt

An LVD interrupt request will take place when the LVD interrupt request flag, LVF, is set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the Low Voltage Detection interrupt enable bit, LVE, must first be set. When the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the LVD interrupt vector, will take place. When the Low Voltage Detection interrupt is serviced, the LVF flag will be automatically cleared, the EMI bit will also be automatically cleared to disable other interrupts.

Interrupt Wake-up Function

Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge transitions on the external interrupt pins may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the SLEEP or IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Rev. 1.10 91 August 18, 2020

Programming Considerations

By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program.

It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.

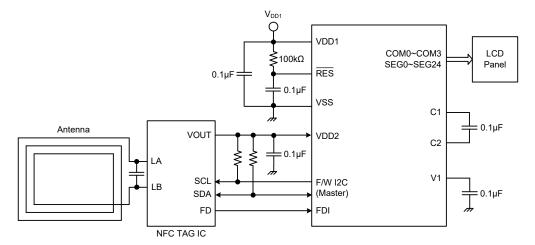
Every interrupt has the capability of waking up the microcontroller when it is in SLEEP or IDLE Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before enter SLEEP or IDLE Mode.

As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the contents of the accumulator, status register or other registers are altered by the interrupt service program, their contents should be saved to the memory at the beginning of the interrupt service routine.

To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts.

Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the devices during the programming process. During the development process, these options are selected using the HT-IDE software development tools. All options must be defined for proper system function, the details of which are shown in the table.


No.	Options				
Oscillator Option					
1	HIRC Frequency Selection – f _{HIRC} : 2MHz, 4MHz or 8MHz				

Note: When the HIRC has been configured at a frequency shown in this table, the HIRC1 and HIRC0 bits should also be setup to select the same frequency to achieve the HIRC frequency accuracy specified in the A.C. Characteristics.

Rev. 1.10 92 August 18, 2020

Application Circuits

Note: 1. Solar or Paper Battery output to V_{DD1} 2. NFC Harvesting energy output to V_{DD2}

3. FD:NFC Filed Detect output, Low active.

Instruction Set

Introduction

Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of three kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified.

Rev. 1.10 94 August 18, 2020

Logical and Rotate Operation

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be set as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections.

Rev. 1.10 95 August 18, 2020

Instruction Set Summary

The following table depicts a summary of the instruction set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions

x: Bits immediate data m: Data Memory address

A: Accumulator i: 0~7 number of bits

addr: Program memory address

Mnemonic	Description	Cycles	Flag Affected
Arithmetic			
ADD A,[m]	Add Data Memory to ACC	1	Z, C, AC, OV
ADDM A,[m]	Add ACC to Data Memory	1 Note	Z, C, AC, OV
ADD A,x	Add immediate data to ACC	1	Z, C, AC, OV
ADC A,[m]	Add Data Memory to ACC with Carry	1	Z, C, AC, OV
ADCM A,[m]	Add ACC to Data memory with Carry	1 Note	Z, C, AC, OV
SUB A,x	Subtract immediate data from the ACC	1	Z, C, AC, OV
SUB A,[m]	Subtract Data Memory from ACC	1	Z, C, AC, OV
SUBM A,[m]	Subtract Data Memory from ACC with result in Data Memory	1 Note	Z, C, AC, OV
SBC A,[m]	Subtract Data Memory from ACC with Carry	1	Z, C, AC, OV
SBCM A,[m]	Subtract Data Memory from ACC with Carry, result in Data Memory	1 Note	Z, C, AC, OV
DAA [m]	Decimal adjust ACC for Addition with result in Data Memory	1 Note	С
Logic Operation	<u> </u>		
AND A,[m]	Logical AND Data Memory to ACC	1	Z
OR A,[m]	Logical OR Data Memory to ACC	1	Z
XOR A,[m]	Logical XOR Data Memory to ACC	1	Z
ANDM A,[m]	Logical AND ACC to Data Memory	1 Note	Z
ORM A,[m]	Logical OR ACC to Data Memory	1 Note	Z
XORM A,[m]	Logical XOR ACC to Data Memory	1 ^{Note}	Z
AND A,x	Logical AND immediate Data to ACC	1	Z
OR A,x	Logical OR immediate Data to ACC	1	Z
XOR A,x	Logical XOR immediate Data to ACC	1	Z
CPL [m]	Complement Data Memory	1 Note	Z
CPLA [m]	Complement Data Memory with result in ACC	1	Z
Increment & De	crement		
INCA [m]	Increment Data Memory with result in ACC	1	Z
INC [m]	Increment Data Memory	1 ^{Note}	Z
DECA [m]	Decrement Data Memory with result in ACC	1	Z
DEC [m]	Decrement Data Memory	1 Note	Z
Rotate			
RRA [m]	Rotate Data Memory right with result in ACC	1	None
RR [m]	Rotate Data Memory right	1 Note	None
RRCA [m]	Rotate Data Memory right through Carry with result in ACC	1	С
RRC [m]	Rotate Data Memory right through Carry	1 Note	С
RLA [m]	Rotate Data Memory left with result in ACC	1	None
RL [m]	Rotate Data Memory left	1 Note	None
RLCA [m]	Rotate Data Memory left through Carry with result in ACC	1	С
RLC [m]	Rotate Data Memory left through Carry	1 Note	С

Rev. 1.10 96 August 18, 2020

Mnemonic	Description	Cycles	Flag Affected
Data Move			
MOV A,[m]	Move Data Memory to ACC	1	None
MOV [m],A	Move ACC to Data Memory	1 ^{Note}	None
MOV A,x	Move immediate data to ACC	1	None
Bit Operation			
CLR [m].i	Clear bit of Data Memory	1 ^{Note}	None
SET [m].i	Set bit of Data Memory	1 ^{Note}	None
Branch Operation	n		
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if Data Memory is zero	1 ^{Note}	None
SZA [m]	Skip if Data Memory is zero with data movement to ACC	1 ^{Note}	None
SZ [m].i	Skip if bit i of Data Memory is zero	1 ^{Note}	None
SNZ [m].i	Skip if bit i of Data Memory is not zero	1 ^{Note}	None
SIZ [m]	Skip if increment Data Memory is zero	1 ^{Note}	None
SDZ [m]	Skip if decrement Data Memory is zero	1 ^{Note}	None
SIZA [m]	Skip if increment Data Memory is zero with result in ACC	1 ^{Note}	None
SDZA [m]	Skip if decrement Data Memory is zero with result in ACC	1 ^{Note}	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read Oper	ration		
TABRD [m]	Read table (specific page or current page) to TBLH and Data Memory	2 ^{Note}	None
TABRDL [m]	Read table (last page) to TBLH and Data Memory	2 ^{Note}	None
Miscellaneous			
NOP	No operation	1	None
CLR [m]	Clear Data Memory	1 ^{Note}	None
SET [m]	Set Data Memory	1 ^{Note}	None
CLR WDT	Clear Watchdog Timer	1	TO, PDF
SWAP [m]	Swap nibbles of Data Memory	1 ^{Note}	None
SWAPA [m]	Swap nibbles of Data Memory with result in ACC	1	None
HALT	Enter power down mode	1	TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no skip takes place only one cycle is required.

^{2.} Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the specified Data Memory.

Operation $[m] \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the Accumulator.

 $\begin{array}{ll} \text{Operation} & \text{ACC} \leftarrow \text{ACC} + [m] \\ \text{Affected flag(s)} & \text{OV, Z, AC, C} \end{array}$

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the specified Data Memory.

 $\label{eq:continuous} \begin{array}{ll} \text{Operation} & & [m] \leftarrow ACC + [m] \\ \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{array}$

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" [m]$

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC$ "AND" x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "AND" [m]$

Affected flag(s) Z

Rev. 1.10 98 August 18, 2020

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then

increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction.

Operation Stack \leftarrow Program Counter + 1

Program Counter ← addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation $[m] \leftarrow 00H$ Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i \leftarrow 0 Affected flag(s) None

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa.

Operation $[m] \leftarrow \overline{[m]}$

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1's complement). Bits which

previously contained a 1 are changed to 0 and vice versa. The complemented result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m]$

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value

resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than

100, it allows multiple precision decimal addition.

Operation $[m] \leftarrow ACC + 00H$ or

 $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation $[m] \leftarrow [m] - 1$

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] - 1$

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents of

the Data Memory and registers are retained. The WDT and prescaler are cleared. The power

down flag PDF is set and the WDT time-out flag TO is cleared.

Operation $TO \leftarrow 0$

 $PDF \leftarrow 1$

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation $[m] \leftarrow [m] + 1$

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator.

The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] + 1$

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter ← addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation $ACC \leftarrow [m]$ Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation $ACC \leftarrow x$ Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation $[m] \leftarrow ACC$ Affected flag(s) None

Rev. 1.10 100 August 18, 2020

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation
Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise

logical OR operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" [m]$

Affected flag(s) Z

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" x$

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "OR" [m]$

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the restored

address.

Operation Program Counter ← Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the specified

immediate data. Program execution continues at the restored address.

Operation Program Counter ← Stack

 $ACC \leftarrow x$

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the

EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning

to the main program.

Operation Program Counter ← Stack

 $EMI \leftarrow 1$

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow [m].7$

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow [m].7$

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces the

Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.

Operation [m].i \leftarrow [m].(i+1); (i=0 \sim 6)

 $[m].7 \leftarrow [m].0$

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow [m].0$

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i \leftarrow [m].(i+1); (i=0 \sim 6)

 $[m].7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

Rev. 1.10 102 August 18, 2020

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces

the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow C$ $C \leftarrow [m].0$

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] - 1$

Skip if [m]=0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,

the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] - 1$

Skip if ACC=0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

 $\begin{array}{ll} \text{Operation} & & [m] \leftarrow \text{FFH} \\ \text{Affected flag(s)} & & \text{None} \end{array}$

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i \leftarrow 1 Affected flag(s) None

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] + 1$

Skip if [m]=0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] + 1$

Skip if ACC=0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if $[m].i \neq 0$

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m]$

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m]$ Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumulator.

The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - x$

Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation $[m].3\sim[m].0 \leftrightarrow [m].7\sim[m].4$

Affected flag(s) None

Rev. 1.10 104 August 18, 2020

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 \sim ACC.0 \leftarrow [m].7 \sim [m].4

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the following instruction.

Operation Skip if [m]=0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,

the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation $ACC \leftarrow [m]$

Skip if [m]=0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires

the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i=0

Affected flag(s) None

TABRD [m] Read table (specific page or current page) to TBLH and Data Memory

Description The low byte of the program code addressed by the table pointer (TBHP and TBLP or only

TBLP if no TBHP) is moved to the specified Data Memory and the high byte moved to

TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved

to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

Rev. 1.10 105 August 18, 2020

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

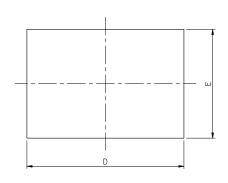
operation. The result is stored in the Accumulator.

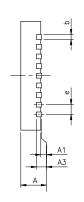
Operation $ACC \leftarrow ACC "XOR" x$

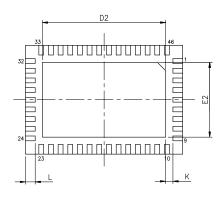
Affected flag(s) Z

Rev. 1.10 106 August 18, 2020

Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.


- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- · Carton information

SAW Type 46-pin QFN (6.5×4.5×0.75mm) Outline Dimensions

Cumbal		Dimensions in inch	
Symbol	Min.	Nom.	Max.
A	0.028	0.030	0.031
A1	0.000	0.001	0.002
A3	_	0.008 BSC	_
b	0.006	0.008	0.010
D	_	0.256 BSC	_
E	_	0.177 BSC	_
е	_	0.016 BSC	_
D2	0.199	0.201	0.203
E2	0.120	0.122	0.124
L	0.014	0.016	0.018
K	0.008	_	_

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3	_	0.203 BSC	_
b	0.15	0.20	0.25
D	_	6.50 BSC	_
E	_	4.50 BSC	_
е	_	0.40 BSC	_
D2	5.05	5.10	5.15
E2	3.05	3.10	3.15
L	0.35	0.40	0.45
K	0.20	_	_

Rev. 1.10 108 August 18, 2020

Copyright[©] 2020 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.