

High Accuracy / Low Current LIRC Flash MCU

HT66F2630

Revision: V1.20 Date: October 25, 2023

www.holtek.com

Table of Contents

Features	
CPU Features	
Peripheral Features	
General Description	
Block Diagram	7
Pin Assignment	8
Pin Description	8
Absolute Maximum Ratings	10
D.C. Characteristics	10
Operating Voltage Characteristics	
Standby Current Characteristics	10
Operating Current Characteristics	11
A.C. Characteristics	12
High Speed Internal Oscillator – HIRC – Frequency Accuracy	12
Low Speed Internal Oscillator – LIRC – Frequency Accuracy	
Operating Frequency Characteristic Curves	
System Start Up Time Characteristics	13
Input/Output Characteristics	14
Memory Characteristics	14
A/D Converter Electrical Characteristics	15
A/D Converter Electrical Characteristics	
LVD/LVR Electrical Characteristics	
LVD/LVR Electrical Characteristics	15
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics	15 16
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics	15 16 16
LVD/LVR Electrical Characteristics	15 16 16
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining	15 16 16 17
LVD/LVR Electrical Characteristics	15 16 17 17
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter.	15 16 17 17 18
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU	15 16 17 17 18 18
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter. Stack	151617181819
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU Flash Program Memory	151617181819
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU Flash Program Memory Structure	15161718181919
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU Flash Program Memory Structure Special Vectors	15161718191920
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining. Program Counter. Stack Arithmetic and Logic Unit – ALU Flash Program Memory Structure Special Vectors Look-up Table Table Program Example. In Circuit Programming – ICP	151617181919202021
Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU Flash Program Memory Structure Special Vectors Look-up Table Table Program Example	151617181919202021
Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining. Program Counter. Stack. Arithmetic and Logic Unit – ALU. Flash Program Memory. Structure. Special Vectors. Look-up Table. Table Program Example. In Circuit Programming – ICP. On-Chip Debug Support – OCDS.	15161718191920202122
LVD/LVR Electrical Characteristics Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining Program Counter Stack Arithmetic and Logic Unit – ALU Flash Program Memory Structure Special Vectors Look-up Table Table Program Example In Circuit Programming – ICP On-Chip Debug Support – OCDS Data Memory Structure	1516171819192020212222
Internal Bandgap Reference Voltage Electrical Characteristics Power-on Reset Characteristics System Architecture Clocking and Pipelining. Program Counter. Stack. Arithmetic and Logic Unit – ALU. Flash Program Memory. Structure. Special Vectors. Look-up Table. Table Program Example. In Circuit Programming – ICP. On-Chip Debug Support – OCDS.	1516171819192020212222

Special Function Register Description	25
Indirect Addressing Registers – IAR0, IAR1	25
Memory Pointers – MP0, MP1	25
Bank Pointer – BP	26
Accumulator – ACC	26
Program Counter Low Register – PCL	26
Look-up Table Registers – TBLP, TBHP, TBLH	26
Status Register – STATUS	27
EEPROM Data Memory	28
EEPROM Data Memory Structure	
EEPROM Registers	28
Reading Data from the EEPROM	29
Writing Data to the EEPROM	30
Write Protection	30
EEPROM Interrupt	30
Programming Considerations	30
Oscillators	32
Oscillator Overview	
System Clock Configurations	32
Internal High Speed RC Oscillator – HIRC	33
Internal 32kHz Oscillator – LIRC	33
Operating Modes and System Clocks	33
System Clocks	
System Operation Modes	34
Control Registers	35
Operating Mode Switching	37
Standby Current Considerations	
Wake-up	40
Watchdog Timer	41
Watchdog Timer Clock Source	41
Watchdog Timer Control Register	41
Watchdog Timer Operation	42
Reset and Initialisation	43
Reset Functions	
Reset Initial Conditions	47
Input/Output Ports	50
Pull-high Resistors	
Port A Wake-up	51
I/O Port Control Registers	
1/O T Off Control Negisters	
Pin-shared Functions	
	52

Introduction	55
	55
TM Operation	55
TM Clock Source	55
TM Interrupts	56
TM External Pins	56
Programming Considerations	57
Periodic Type TM – PTM	58
Periodic TM Operation	
Periodic Type TM Register Description	58
Periodic Type TM Operating Modes	63
Analog to Digital Converter	72
A/D Converter Overview	
A/D Converter Register Description	73
A/D Converter Reference Voltage	75
A/D Converter Input Signals	75
A/D Converter Operation	76
Conversion Rate and Timing Diagram	77
Summary of A/D Conversion Steps	77
Programming Considerations	78
A/D Conversion Function	78
A/D Conversion Programming Examples	79
Low Voltage Detector – LVD	81
LVD Register	
LVD Operation	82
·	
·	82
Interrupts	
Interrupts	82
Interrupt Registers	82 85
Interrupt Registers	82 85 86
Interrupts Interrupt Registers Interrupt Operation External Interrupts	
Interrupts Interrupt Registers Interrupt Operation External Interrupts TM Interrupts	
Interrupts Interrupt Registers Interrupt Operation External Interrupts TM Interrupts Time Base Interrupts	
Interrupts Interrupt Registers. Interrupt Operation External Interrupts TM Interrupts Time Base Interrupts A/D Converter Interrupt	
Interrupts Interrupt Registers Interrupt Operation External Interrupts TM Interrupts Time Base Interrupts A/D Converter Interrupt LVD Interrupt	
Interrupts Interrupt Registers Interrupt Operation External Interrupts TM Interrupts Time Base Interrupts A/D Converter Interrupt LVD Interrupt EEPROM Interrupt	
Interrupts	
Interrupt Registers	

HT66F2630 High Accuracy / Low Current LIRC Flash MCU

Logical and Rotate Operation	92
Branches and Control Transfer	92
Bit Operations	92
Table Read Operations	
Other Operations	92
Instruction Set Summary	93
Table Conventions	93
Instruction Definition	95
Package Information	105
8-pin SOP (150mil) Outline Dimensions	
16-pin NSOP (150mil) Outline Dimensions	107

Features

CPU Features

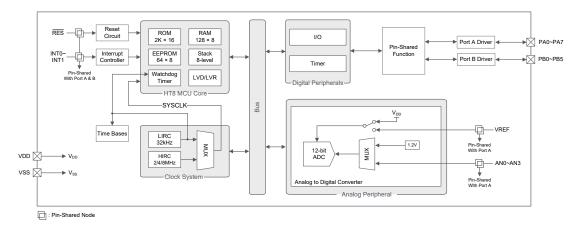
- · Operating voltage
 - f_{SYS}=2MHz: 1.8V~5.5V
 - f_{SYS} =4MHz: 1.8V~5.5V
 - f_{SYS}=8MHz: 2.2V~5.5V
- Up to $0.5\mu s$ instruction cycle with 8MHz system clock at $V_{DD} = 5V$
- Power down and wake-up functions to reduce power consumption
- · Oscillator types
 - Internal High Speed RC HIRC
 - Internal Low Speed 32kHz RC LIRC
- Multi-mode operation: FAST, SLOW, IDLE and SLEEP
- Fully integrated internal oscillators require no external components
- All instructions executed in one or two instruction cycles
- Table read instructions
- 63 powerful instructions
- 8-level subroutine nesting
- · Bit manipulation instruction

Peripheral Features

- Flash Program Memory: 2K×16
- RAM Data Memory: 128×8
- True EEPROM Memory: 64×8
- · Watchdog Timer function
- 14 bidirectional I/O lines
- Two pin-shared external interrupts
- One Timer Module for time measurement, input capture, compare match output or PWM output or single pulse output function
- Dual Time-Base functions for generation of fixed time interrupt signals
- 4 external channel 12-bit resolution A/D converter
- Low voltage reset function
- · Low voltage detect function
- Package types: 8-pin SOP, 16-pin NSOP

Rev. 1.20 6 October 25, 2023

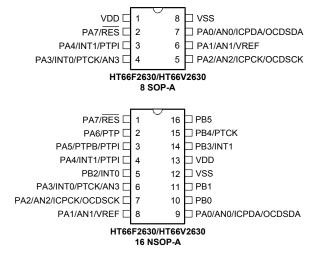
General Description


The device is a Flash Memory A/D type 8-bit high performance RISC architecture microcontroller. Offering users the convenience of Flash Memory multi-programming features, the device also includes a wide range of functions and features. Other memory includes an area of RAM Data Memory as well as an area of true EEPROM memory for storage of non-volatile data such as serial numbers, calibration data etc.

Analog feature includes a multi-channel 12-bit A/D converter. A single extremely flexible Timer Module provides timing, pulse generation and PWM generation functions. Protective features such as an internal Watchdog Timer, Low Voltage Reset and Low Voltage Detector coupled with excellent noise immunity and ESD protection ensure that reliable operation is maintained in hostile electrical environments.

A full choice of internal high and low speed oscillators are provided and the two fully integrated system oscillators require no external components for their implementation. The ability to operate and switch dynamically between a range of operating modes using different clock sources gives users the ability to optimize microcontroller operation and minimize power consumption.

The inclusion of flexible I/O programming features and Time-Base funcitons along with many other features ensure that the device will find excellent use in applications such as power saving timing wake up products in addition to many others.


Block Diagram

Rev. 1.20 7 October 25, 2023

Pin Assignment

Note: 1. The desired pin-shared function is determined by the corresponding pin-shared or functional control bits.

- 2. The OCDSDA and OCDSCK pins are supplied for the OCDS dedicated pins and as such only available for the HT66V2630 device which is the OCDS EV chip for the HT66F2630 device.
- 3. For the unbonded pins, PB6, PB7, PC0 and PC1, the pin status should be properly configured to avoid unwanted power consumption resulting from floating input conditions. Refer to the "Standby Current Considerations" and "Input/Output Ports" sections.

Pin Description

The function of each pin is listed in the following table, however the details behind how each pin is configured is contained in other sections of the datasheet. As the Pin Description table shows the situation for the package with the most pins, not all pins in the tables will be available on smaller package sizes.

Pin Name	Function	ОРТ	I/T	O/T	Description
	PA0	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA0/AN0/ICPDA/OCDSDA	AN0	PAS0	AN	_	A/D Converter external analog input
	ICPDA	_	ST	CMOS	ICP Data/Address pin
	OCDSDA		ST	CMOS	OCDS Data/Address pin, for EV chip only.
PA1/AN1/VREF	PA1	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
	AN0	PAS0	AN	_	A/D Converter external analog input
	VREF	PAS0	AN	_	A/D Converter external reference input
	PA2	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA2/AN2/ICPCK/OCDSCK	AN2	PAS0	AN		A/D Converter external analog input
	ICPCK	_	ST	_	ICP clock pin
	OCDSCK	_	ST		OCDS clock pin, for EV chip only

Rev. 1.20 8 October 25, 2023

Pin Name	Function	ОРТ	I/T	O/T	Description
	PA3	PAPU PAWU PAS0	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA3/INT0/PTCK/AN3	INT0	PAS0 IFS INTEG INTC0	ST	_	External Interrupt 0
	PTCK	PAS0 IFS	ST	_	PTM clock input
	AN3	PAS0	AN	_	A/D Converter external analog input
	PA4	PAPU PAWU	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA4/INT1/PTPI	INT1	IFS INTEG INTC0	ST	_	External Interrupt 1
	PTPI	IFS	ST	_	PTM capture input
	PA5	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
PA5/PTPB/PTPI	PTPB	PAS1	_	CMOS	PTM inverted output
	PTPI	PAS1 IFS	ST	_	PTM capture input
PA6/PTP	PA6	PAPU PAWU PAS1	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
	PTP	PAS1	_	CMOS	PTM non-inverted output
PA7/RES	PA7	PAPU PAWU RSTC	ST	CMOS	General purpose I/O. Register enabled pull-up and wake-up.
	RES	RSTC	ST	_	External reset input
PB0~PB1	PB0~PB1	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
	PB2	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB2/INT0	INT0	IFS INTEG INTC0	ST	_	External Interrupt 0
	PB3	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
PB3/INT1	INT1	IFS INTEG INTC0	ST	_	External Interrupt 1
 PB4/PTCK	PB4	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
1 D-/1 TOK	PTCK	IFS	ST	_	PTM clock input
PB5	PB5	PBPU	ST	CMOS	General purpose I/O. Register enabled pull-up.
VDD	VDD		PWR	_	Positive power supply
VSS	VSS	_	PWR	_	Negative power supply, ground

Legend: I/T: Input type;

O/T: Output type;

OPT: Optional by register option;

PWR: Power;

ST: Schmitt Trigger input;

CMOS: CMOS output;

AN: Analog signal.

Rev. 1.20 9 October 25, 2023

HT66F2630 High Accuracy / Low Current LIRC Flash MCU

Absolute Maximum Ratings

Supply Voltage	V _{SS} -0.3V to 6.0V
Input Voltage	V _{SS} =0.3V to V_{DD} +0.3V
Storage Temperature	-60°C to 150°C
Operating Temperature	-40°C to 85°C
I _{OH} Total	-80mA
IoL Total	80mA
Total Power Dissipation	500mW

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of the devices at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency, pin load conditions, temperature and program instruction type, etc., can all exert an influence on the measured values.

Operating Voltage Characteristics

Ta=-40°C~85°C

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
V _{DD}	Operating Voltage – HIRC	f _{SYS} =f _{HIRC} =2MHz	1.8	_	5.5		
		f _{SYS} =f _{HIRC} =4MHz	1.8	_	5.5	V	
		f _{SYS} =f _{HIRC} =8MHz	2.2	_	5.5		
	Operating Voltage – LIRC	f _{SYS} =f _{LIRC} =32kHz	1.8	_	5.5	V	

Standby Current Characteristics

Ta=25°C, unless otherwise specified.

Symbol	Standby Mode		Test Conditions	Тур.	Max.	Max.	Unit
Syllibol		V _{DD}	Conditions			@85°C	Offic
SLEEP Mode		1.8V		0.2	0.6	0.7	
		3V	WDT off	0.2	0.8	1.0	μA
	SI EED Modo	5V		0.5	1.0	1.2	
	1.8V		0.9	1.8	2.9		
I _{STB}		3V	WDT on	1.0	2.0	3.6	μA
		5V		2.2	4.5	6.0	
IDLE0 Mode –		1.8V	f _{SUB} on	1.0	2.0	4.8	
	IDLE0 Mode – LIRC	3V		1.3	2.5	6.0	μΑ
		5V		2.5	5.0	12.0	

Rev. 1.20 October 25, 2023

Symbol	Standby Mode		Test Conditions	Tim	May	Max.	Unit
Symbol		V _{DD}	Conditions	Тур.	Max.	@85°C	Unit
		1.8V		60	100	160	
		3V	f _{SUB} on, f _{SYS} =2MHz	80	120	240	μА
		5V		160	240	360	
		1.8V	f _{SUB} on, f _{SYS} =4MHz f _{SUB} on, f _{SYS} =8MHz	144	200	240	
I _{STB}	IDLE1 Mode – HIRC	3V		180	250	300	μΑ
		5V		400	600	720	
		2.2V		288	400	480	μA
		3V		360	500	600	
		5V		600	800	960	

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are set in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- 4. All Standby Current values are taken after a HALT instruction execution thus stopping all instruction execution.

Operating Current Characteristics

Ta=25°C

Symbol	Operating Mode		Test Conditions	Min.	Turn	Max.	Unit
Symbol	Operating wode	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Unit
		1.8V		_	8	16	
SLOW Mode – LIRC	SLOW Mode – LIRC	3V	f _{sys} =32kHz	_	10	20	μA
	5V		_	30	50		
		1.8V		_	0.2	0.4	mA
		3V	f _{SYS} =2MHz	_	0.3	0.5	
		5V		_	0.6	1.0	
I _{DD}		1.8V		_	0.3	0.5	
	FAST Mode – HIRC	3V	f _{SYS} =4MHz	_	0.4	0.6	mA
		5V		_	0.8	1.2	
		2.2V		_	0.6	1.0	
		3V	f _{SYS} =8MHz	_	0.8	1.2	mA
		5V		_	1.6	2.4	

Note: When using the characteristic table data, the following notes should be taken into consideration:

- 1. Any digital inputs are set in a non-floating condition.
- 2. All measurements are taken under conditions of no load and with all peripherals in an off state.
- 3. There are no DC current paths.
- 4. All Operating Current values are measured using a continuous NOP instruction program loop.

Rev. 1.20 11 October 25, 2023

A.C. Characteristics

For data in the following tables, note that factors such as oscillator type, operating voltage, operating frequency and temperature etc., can all exert an influence on the measured values.

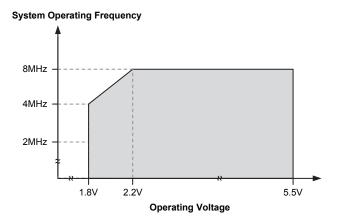
High Speed Internal Oscillator - HIRC - Frequency Accuracy

During the program writing operation the writer will trim the HIRC oscillator at a user selected HIRC frequency and user selected voltage of either 3V or 5V.

Cumbal	Dovemeter	Tes	t Conditions	Min	Tres	May	I Imié
Symbol	Parameter	V _{DD}	Temperature	Min.	Тур.	Max.	Unit
			25°C	-1%	2	+1%	
		3V/5V	-20°C~60°C	-2%	2	+2%	
	O NALIE With a Tripage of LUDG		-40°C~85°C	-3%	2	+3%	
	2 MHz Writer Trimmed HIRC Frequency	2.2V~5.5V	25°C	-6%	2	+9%	MHz
	i roquonoy	2.20~3.50	-40°C~85°C	-6%	2	+10%	
		1.8V~5.5V	25°C	-6%	2	+12%	
		1.80~5.50	-40°C~85°C	-6%	2	+15%	
		2) //E) /	25°C	-1%	4	+1%	
f _{HIRC}			3V/5V	-40°C~85°C	-2.5%	4	+2.5%
	4 MHz Writer Trimmed HIRC	2.2V~5.5V	25°C	-2.5%	4	+2.5%	% MHz
	Frequency	2.20~5.50	-40°C~85°C	-3%	4	+3%	IVITIZ
		1.8V~5.5V	25°C	-3.5%	4	+3.5%	
		1.00~3.50	-40°C~85°C	-4%	4	+4%	
		3V/5V	25°C	-1%	8	+1%	
	8 MHz Writer Trimmed HIRC	30/30	-40°C~85°C	-10%	8	+2%	MHz
	Frequency	2.2V~5.5V	25°C	-10%	8	+3%	
		2.20-5.50	-40°C~85°C	-15%	8	+5%	

- Note: 1. The 3V/5V values for V_{DD} are provided as these are the two selectable fixed voltages at which the HIRC frequency is trimmed by the writer.
 - 2. The row below the 3V/5V trim voltage row is provided to show the values for the full V_{DD} range operating voltage. It is recommended that the trim voltage is fixed at 3V for application voltage ranges from 1.8V to 3.6V and fixed at 5V for application voltage ranges from 3.3V to 5.5V.
 - 3. The minimum and maximum tolerance values provided in the table are only for the frequency at which the writer trims the HIRC oscillator. After trimming at this chosen specific frequency any change in HIRC oscillator frequency using the oscillator register control bits by the application program will give a frequency tolerance to within $\pm 20\%$.

Low Speed Internal Oscillator - LIRC - Frequency Accuracy


Cumbal	Parameter	Test	Conditions	Min.	Tim	Max.	Unit
Symbol	Farameter	V _{DD}	Temperature	IVIIII.	Тур.	IVIAX.	Ollit
	2	25°C	-0.5%	32	+0.5%		
		3V	-20°C~70°C	-3%	32	+3%	
f _{LIRC}	32kHz Writer Trimmed LIRC Frequency		-40°C~85°C	-4%	32	+4%	kHz
		1 9\/~5 5\/	25°C	-3%	32	+3%	
		1.8V~5.5V	-40°C~85°C	-7%	32	+7%	

Note: The 3V value for V_{DD} is provided as this is the fixed voltage at which the LIRC frequency is trimmed by the writer. The row below the 3V trim voltage row is provided to show the values for the full V_{DD} range operating voltage.

Rev. 1.20 12 October 25, 2023

Operating Frequency Characteristic Curves

System Start Up Time Characteristics

Ta=-40°C~85°C

Cymbal	Parameter		Test Conditions	Min.	Tren	May	Unit
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	Max.	Unit
	System Start-up Time	_	f _{SYS} =f _H ~f _H /64, f _H =f _{HIRC}	_	16	_	t _{HIRC}
	Wake-up from Condition where f _{SYS} is off	_	f _{SYS} =f _{SUB} =f _{LIRC}	_	2	_	tsys
	System Start-up Time Wake-up from Condition where f _{SYS} is on System Speed Switch Time FAST to SLOW Mode or SLOW to FAST Mode	_	$f_{SYS}=f_H\sim f_H/64$, $f_H=f_{HIRC}$	_	2	_	tsys
tsst		_	f _{SYS} =f _{SUB} = f _{LIRC}	_	2	_	t _{SYS}
		_	f_{HIRC} switches from off \rightarrow on	_	16	_	t _{HIRC}
	System Reset Delay Time Reset source from Power-on Reset or LVR Hardware Reset	_	RR _{POR} =5V/ms	42	48	54	ms
t_{RSTD}	System Reset Delay Time LVRC/WDTC/RSTC Software Reset System Reset Delay Time Reset source from WDT Overflow or RES pin reset	_	_				
		_	_	14	16	18	ms
t _{SRESET}	Minimum Software Reset Width to Reset	_	_	45	90	120	μs

- Note: 1. For the System Start-up time values, whether f_{SYS} is on or off depends upon the mode type and the chosen f_{SYS} system oscillator. Details are provided in the System Operating Modes section.
 - 2. The time units, shown by the symbols, t_{HIRC} , etc. are the inverse of the corresponding frequency values as provided in the frequency tables. For example $t_{HIRC} = 1/f_{HIRC}$, $t_{SYS} = 1/f_{SYS}$ etc.
 - 3. The System Speed Switch Time is effectively the time taken for the newly activated oscillator to start up.

Rev. 1.20 13 October 25, 2023

Input/Output Characteristics

Ta=-40°C~85°C

Cumbal	Parameter		Test Conditions	Min.	Tim	Max.	Unit
Symbol	Parameter	V _{DD}	Conditions	WIIII.	Тур.	wax.	Unit
	Input Low Voltage for I/O Ports	5V	_	0.0	_	1.5	
VIL	Imput Low Voltage for I/O Ports	_	_	0.0	_	$0.2V_{\text{DD}}$	V
	Input Low Voltage for RES pin	_	_	0.0	_	$0.4V_{DD}$	
	Input High Voltage for I/O Ports	5V	_	3.5	_	5.0	
VIH	Imput riigii voitage ioi i/O Forts	_	_	$0.8V_{\text{DD}}$	_	V_{DD}	V
	Input High Voltage for RES pin	_	_	$0.9V_{\text{DD}}$	_	V_{DD}	
I _{OL}	Sink Current for I/O Ports	3V	Voi=0.1Vpp	16	32	_	mA
TOL	Silik Guitent for 1/0 Forts	5V	VOL-O. I VDD	32	65	55 —	IIIA
Іон	OH Source Current for I/O Ports	3V	VoH=0.9Vpp	-4	-8	_	mA - kΩ
IOH	Source Current for 1/O Forts	5V	V OH-0.9 V DD	-8	-16	_	
		3V	LVPU=0,	20	60	100	
Rph	Pull-high Resistance for I/O Ports ^(Note)	5V	PxPU=FFH (x=A, B or C)	10	30	50	
INPH	Full-High Resistance for 1/O Forts	3V	LVPU=1,	6.67	15.00	23.00	K22
		5V	PxPU=FFH (x=A, B or C)	3.5	7.5	12.0	
I _{LEAK}	Input Leakage Current for I/O Ports	5V	$V_{IN}=V_{DD}$ or $V_{IN}=V_{SS}$	_	_	±1	μA
t _{TPI}	PTPI Capture Input Minimum Pulse Width	_	_	0.3	_	_	μs
t _{TCK}	PTCK Clock Input Minimum Pulse Width	_		0.3		_	μs
t _{INT}	Interrupt Input Pin Minimum Pulse Width	_	_	10	_	_	μs
t _{RES}	External Reset Minimum Low Pulse Width	_	_	10		_	μs

Note: The R_{PH} internal pull-high resistance value is calculated by connecting to ground and enabling the input pin with a pull-high resistor and then measuring the pin current at the specified supply voltage level. Dividing the voltage by this measured current provides the R_{PH} value.

Memory Characteristics

Ta=-40°C~85°C, unless otherwise specified.

			Test Conditions				
Symbol	Parameter		rest Conditions	Min.	Тур.	Max.	Unit
-		V_{DD}	Conditions		.,,,,		
Flash Pr	ogram / Data EEPROM Memory						
	Operating Voltage for Flash Program Read/Write	_	_	V_{DDmin}	_	V_{DDmax}	V
V_{DD}	Operating Voltage for Data EEPROM Read		_	1.8	_	5.5	V
Operating Voltage for Data EEPROM Write		_	Ta=-40°C~85°C	2.2	_	5.5	V
4	Erase/Write Time – Flash Program Memory	_	_	_	2	3	ms
Write Cycle Time – Data EEPROM Memor		_	_	_	4	6	ms
I _{DDPGM}	Programming/Erase Current on VDD	_	_	_	_	5	mA
_	Cell Endurance – Flash Program Memory	_	_	10K	_	_	E/W
E _P	Cell Endurance – Data EEPROM Memory	_	_	100K	_	_	E/W
t _{RETD}	ROM Data Retention Time	_	Ta=25°C	_	40	_	Year
RAM Da	ta Memory						
V_{DD}	Operating Voltage for Read/Write	_	_	V_{DDmin}	_	V_{DDmax}	
V_{DR}	RAM Data Retention Voltage	_	Device in SLEEP Mode	1	_	_	V

Note: "E/W" means Erase/Write times.

Rev. 1.20 14 October 25, 2023

A/D Converter Electrical Characteristics

Ta=25°C, unless otherwise specified.

Cumbal	Parameter		Test Conditions	Min.	Trem	Max	I Imié
Symbol	Parameter	V _{DD} Co		IVIIII.	Тур.	Max.	Unit
V _{ADI}	Input Voltage	_	_	0	_	V_{REF}	V
V_{REF}	Reference Voltage	_	_	1.8	_	V_{DD}	V
DNL	Differential Non-linearity	_	V _{REF} =V _{DD} , t _{ADCK} =0.5μs, Ta=-40°C~85°C	-3	_	+3	LSB
INL	Integral Non-linearity	_	V _{REF} =V _{DD} , t _{ADCK} =0.5μs, Ta=-40°C~85°C	-4	_	+4	LSB
		1.8V		_	1.0	2.0	
I _{ADC}	Additional Current for A/D Converter Enable	3V	No load, t _{ADCK} =0.5µs	_	1.0	2.0	mA
		5V		_	1.5	3.0	
t _{ADCK}	Clock Period	_	_	0.5	_	10	μs
t _{ON2ST}	A/D Converter On-to-Start Time	_	_	4	_	_	μs
t _{ADC}	Conversion Time (Including A/D Sample and Hold Time)	_	_	_	16	_	t _{ADCK}

LVD/LVR Electrical Characteristics

Ta=25°C, unless otherwise specified.

Cumbal	Parameter		Test Conditions	Min.	Trem	May	Unit	
Symbol	Parameter	V _{DD}	Conditions	IVIIII.	Тур.	wax.	Unit	
			LVR enable, voltage select 1.70V, Ta=-40°C~85°C	-5%	1.70	+5%		
	V _{LVR} Low Voltage Reset Voltage		LVR enable, voltage select 1.90V, Ta=-40°C~85°C	-5%	1.90	+5%		
V _{LVR}		_	LVR enable, voltage select 2.55V, Ta=-40°C~85°C	-3%	2.55	+3%	V	
		LVR enable, voltage select 3.15V, Ta=-40°C~85°C	-3%	3.15	+3%			
			LVR enable, voltage select 3.80V, Ta=-40°C~85°C	-3%	3.80	+3%		
			LVD enable, voltage select 1.8V, Ta=-40°C~85°C	-5%	1.8	+5%		
			LVD enable, voltage select 2.0V, Ta=-40°C~85°C	-5%	2.0	+5%		
			LVD enable, voltage select 2.4V, Ta=-40°C~85°C	-5%	2.4	+5%		
	Laura Valla da Bata at Valla da		LVD enable, voltage select 2.7V, Ta=-40°C~85°C	-5%	2.7	+5%		
V _{LVD}	Low Voltage Detect Voltage	_	LVD enable, voltage select 3.0V, Ta=-40°C~85°C	-5%	3.0	+5% +3% +3% +3% +5% +5%	V	
			LVD enable, voltage select 3.3V, Ta=-40°C~85°C	-5%	3.3	+5%		
					LVD enable, voltage select 3.6V, Ta=-40°C~85°C	-5%	3.6	+5%
			LVD enable, voltage select 4.0V, Ta=-40°C~85°C	-5%	4.0	+5%		

Rev. 1.20 15 October 25, 2023

Cumbal	Donomotor		Test Conditions	N/I:m	Trem	May	I Imia
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
		3V	LVD enable, LVR enable,	_	_	10	
	LVRLVDBG Operating Current	5V	V _{LVR} =1.9V, V _{LVD} =2.0V, VBGEN=0	_	8	15	
ILVRLVDBG	Operating Current	3V	LVD enable, LVR enable,	_	_	200	μA
		5V	V _{LVR} =1.9V, V _{LVD} =2.0V, VBGEN=1	_	210	245	
I _{LVR}	Additional Current for LVR Enable	5V	LVD disable, VBGEN=0	_	_	8	μΑ
I _{LVD}	Additional Current for LVD Enable	5V	LVR disable, VBGEN=0	_	_	8	μA
			LVR enable, VBGEN=0, LVD off → on, Ta=-40°C~85°C	_	_	15	
LLVDS	t _{LVDS} LVDO Stable Time	_	LVR disable, VBGEN=0, LVD off → on, Ta=-40°C~85°C	_	_	150	μs
t _{LVR}	Minimum Low Voltage Width to Reset	_	_	120	240	480	μs
t _{LVD}	Minimum Low Voltage Width to Interrupt	_	_	60	120	240	μs

Internal Bandgap Reference Voltage Electrical Characteristics

Ta=-40°C~85°C, unless otherwise specified.


Coursels ad	Parameter		Test Conditions	B.d.i.e	T	Mari	I I mit
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V_{BG}	Bandgap Reference Voltage	_	Ta=-40°C~85°C	-5%	1.2	+5%	V
I _{BG}	Additional Current for Bandgap Reference Voltage Enable	_	LVR disable, LVD disable	_	_	230	μA
t _{BGS}	V _{BG} Turn On Stable Time	_	No load	_	_	50	μs

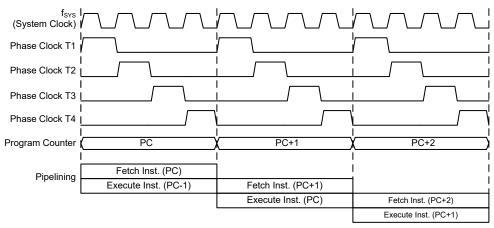
Note: The V_{BG} voltage is used as the A/D converter internal signal input.

Power-on Reset Characteristics

Ta=-40°C~85°C

Symbol	Poromotor	1	Test Conditions	Min.	Tun	Max.	Unit
Symbol Parameter		V _{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Ollit
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	_	_	_	_	100	mV
RR _{POR}	V _{DD} Rising Rate to Ensure Power-on Reset	_	_	0.035	_	_	V/ms
t _{POR}	Minimum Time for V_{DD} Stays at V_{POR} to Ensure Power-on Reset	_	_	1	_	_	ms

Rev. 1.20 16 October 25, 2023


System Architecture

A key factor in the high-performance features of the Holtek range of microcontrollers is attributed to their internal system architecture. The device takes advantage of the usual features found within RISC microcontrollers providing increased speed of operation and enhanced performance. The pipelining scheme is implemented in such a way that instruction fetching and instruction execution are overlapped, hence instructions are effectively executed in one cycle, with the exception of branch or call instructions which need one more cycle. An 8-bit wide ALU is used in practically all instruction set operations, which carries out arithmetic operations, logic operations, rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by moving data through the Accumulator and the ALU. Certain internal registers are implemented in the Data Memory and can be directly or indirectly addressed. The simple addressing methods of these registers along with additional architectural features ensure that a minimum of external components is required to provide a functional I/O and A/D control system with maximum reliability and flexibility. This makes the device suitable for low-cost, high-volume production for controller applications.

Clocking and Pipelining

The main system clock, derived from either a HIRC or LIRC oscillator is subdivided into four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4 clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms one instruction cycle. Although the fetching and execution of instructions takes place in consecutive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are effectively executed in one instruction cycle. The exception to this are instructions where the contents of the Program Counter are changed, such as subroutine calls or jumps, in which case the instruction will take one more instruction cycle to execute.

For instructions involving branches, such as jump or call instructions, two machine cycles are required to complete instruction execution. An extra cycle is required as the program takes one cycle to first obtain the actual jump or call address and then another cycle to actually execute the branch. The requirement for this extra cycle should be taken into account by programmers in timing sensitive applications.

System Clocking and Pipelining

Rev. 1.20 17 October 25, 2023

HT66F2630 High Accuracy / Low Current LIRC Flash MCU

Instruction Fetching

Program Counter

During program execution, the Program Counter is used to keep track of the address of the next instruction to be executed. It is automatically incremented by one each time an instruction is executed except for instructions, such as "JMP" or "CALL" that demand a jump to a non-consecutive Program Memory address. Only the lower 8 bits, known as the Program Counter Low Register, are directly addressable by the application program.

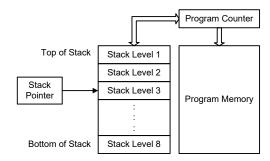
When executing instructions requiring jumps to non-consecutive addresses such as a jump instruction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control by loading the required address into the Program Counter. For conditional skip instructions, once the condition has been met, the next instruction, which has already been fetched during the present instruction execution, is discarded and a dummy cycle takes its place while the correct instruction is obtained.

Program Counter						
Program Counter Hi	gh Byte	PCL Register				
PC10~PC8		PCL7~PCL0				

Program Counter

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is available for program control and is a readable and writeable register. By transferring data directly into this register, a short program jump can be executed directly; however, as only this low byte is available for manipulation, the jumps are limited to the present page of memory that is 256 locations. When such program jumps are executed it should also be noted that a dummy cycle will be inserted. Manipulating the PCL register may cause program branching, so an extra cycle is needed to pre-fetch.

Stack


This is a special part of the memory which is used to save the contents of the Program Counter only. The stack is organized into multiple levels and neither part of the data nor part of the program space, and is neither readable nor writeable. The activated level is indexed by the Stack Pointer, and is neither readable nor writeable. At a subroutine call or interrupt acknowledge signal, the contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an interrupt routine, signaled by a return instruction, RET or RETI, the Program Counter is restored to its previous value from the stack. After a device reset, the Stack Pointer will point to the top of the stack.

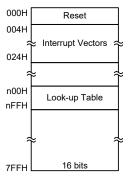
If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded but the acknowledge signal will be inhibited. When the Stack Pointer is decremented, by RET or RETI, the interrupt will be serviced. This feature prevents stack overflow allowing the programmer to use the structure more easily. However, when the stack is full, a CALL subroutine instruction can still be executed which will result in a stack overflow. Precautions should be taken to avoid such cases which might cause unpredictable program branching.

Rev. 1.20 18 October 25, 2023

If the stack is overflow, the first Program Counter save in the stack will be lost.

Arithmetic and Logic Unit - ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic and logic operations of the instruction set. Connected to the main microcontroller data bus, the ALU receives related instruction codes and performs the required arithmetic or logical operations after which the result will be placed in the specified register. As these ALU calculation or operations may result in carry, borrow or other status changes, the status register will be correspondingly updated to reflect these changes. The ALU supports the following functions:


- · Arithmetic operations: ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA
- · Logic operations: AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA
- Rotation: RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC
- · Increment and Decrement: INCA, INC, DECA, DEC
- Branch decision: JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Flash Program Memory

The Program Memory is the location where the user code or program is stored. For the device the Program Memory is Flash type, which means it can be programmed and re-programmed a large number of times, allowing the user the convenience of code modification on the same device. By using the appropriate programming tools, the Flash device offers users the flexibility to conveniently debug and develop their applications while also offering a means of field programming and updating.

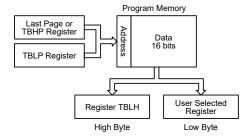
Structure

The Program Memory has a capacity of 2K×16 bits. The Program Memory is addressed by the Program Counter and also contains data, table information and interrupt entries. Table data, which can be set in any location within the Program Memory, is addressed by a separate table pointer register.

Program Memory Structure

Rev. 1.20 19 October 25, 2023

Special Vectors


Within the Program Memory, certain locations are reserved for the reset and interrupts. The location 000H is reserved for use by the device reset for program initialisation. After a device reset is initiated, the program will jump to this location and begin execution.

Look-up Table

Any location within the Program Memory can be defined as a look-up table where programmers can store fixed data. To use the look-up table, the table pointer must first be configured by placing the address of the look up data to be retrieved in the table pointer registers, TBLP and TBHP. These registers define the total address of the look-up table.

After setting up the table pointer, the table data can be retrieved from the Program Memory using the "TABRD [m]" or "TABRDL[m]" instructions respectively. When the instruction is executed, the lower order table byte from the Program Memory will be transferred to the user defined Data Memory register [m] as specified in the instruction. The higher order table data byte from the Program Memory will be transferred to the TBLH special register. Any unused bits in this transferred higher order byte will be read as "0".

The accompanying diagram illustrates the addressing data flow of the look-up table.

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from the microcontroller. This example uses raw table data located in the Program Memory which is stored there using the ORG statement. The value at this ORG statement is "700H" which refers to the start address of the last page within the 2K words Program Memory of the device. The table pointer low byte register is set here to have an initial value of "06H". This will ensure that the first data read from the data table will be at the Program Memory address "706H" or 6 locations after the start of the last page. Note that the value for the table pointer is referenced to the specific address pointed by the TBLP and TBHP registers if the "TABRD [m]" instruction is being used. The high byte of the table data which in this case is equal to zero will be transferred to the TBLH register automatically when the "TABRD [m]" instruction is executed.

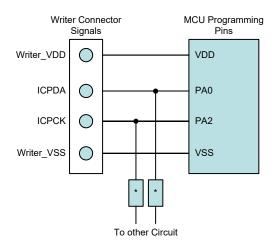
Because the TBLH register is a read-only register and cannot be restored, care should be taken to ensure its protection if both the main routine and Interrupt Service Routine use table read instructions. If using the table read instructions, the Interrupt Service Routines may change the value of the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recommended that simultaneous use of the table read instructions should be avoided. However, in situations where simultaneous use cannot be avoided, the interrupts should be disabled prior to the execution of any main routine table-read instructions. Note that all table related instructions require two instruction cycles to complete their operation.

Rev. 1.20 October 25, 2023

Table Read Program Example

```
tempreq1 db ?
                   ; temporary register #1
                  ; temporary register #2
tempreg2 db ?
     :
mov a,06h
                  ; initialise low table pointer - note that this address is referenced
                  ; to the last page or the page that thhp pointed
mov tblp,a
                  ; initialise high table pointer
mov a,07h
mov tbhp, a
    :
tabrd tempreg1
                  ; transfers value in table referenced by table pointer,
                   ; data at program memory address "706H" transferred to tempreg1 and
TBLH
dec tblp
                  ; reduce value of table pointer by one
tabrd tempreg2
                   ; transfers value in table referenced by table pointer,
                   ; data at program memory address "705H" transferred to tempreg2 and TBLH
                   ; in this example the data "1AH" is transferred to tempreg1 and data "0FH" to
                   ; register tempreg2
                   ; the value "00H" will be transferred to the high byte register TBLH
     :
     :
org 700h
                   ; sets initial address of program memory
dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
```

In Circuit Programming - ICP


The provision of Flash type Program Memory provides the user with a means of convenient and easy upgrades and modifications to their programs on the same device.

As an additional convenience, Holtek has provided a means of programming the microcontroller incircuit using a 4-pin interface. This provides manufacturers with the possibility of manufacturing their circuit boards complete with a programmed or un-programmed microcontroller, and then programming or upgrading the program at a later stage. This enables product manufacturers to easily keep their manufactured products supplied with the latest program releases without removal and reinsertion of the device.

Holtek Writer Pins	MCU Programming Pins	Pin Description		
ICPDA	PA0	Programming Serial Data/Address		
ICPCK	PA2	Programming Clock		
VDD	VDD	Power Supply		
VSS	VSS	Ground		

The Program Memory can be programmed serially in-circuit using this 4-wire interface. Data is downloaded and uploaded serially on a single pin with an additional line for the clock. Two additional lines are required for the power supply and one line for the reset. The technical details regarding the in-circuit programming of the device is beyond the scope of this document and will be supplied in supplementary literature.

During the programming process, the user must take care of the ICPDA and ICPCK pins for data and clock programming purposes to ensure that no other outputs are connected to these two pins.

Note: * may be resistor or capacitor. The resistance of * must be greater than $1k\Omega$ or the capacitance of * must be less than 1nF.

On-Chip Debug Support - OCDS

There is an EV chip named HT66V2630 which is used to emulate the HT66F2630 device. The EV chip device also provides an "On-Chip Debug" function to debug the real MCU device during the development process. The EV chip and the real MCU device are almost functionally compatible except for "On-Chip Debug" function. Users can use the EV chip device to emulate the real chip device behavior by connecting the OCDSDA and OCDSCK pins to the Holtek HT-IDE development tools. The OCDSDA pin is the OCDS Data/Address input/output pin while the OCDSCK pin is the OCDS clock input pin. When users use the EV chip for debugging, other functions which are shared with the OCDSDA and OCDSCK pins in the device will have no effect in the EV chip. However, the two OCDS pins which are pin-shared with the ICP programming pins are still used as the Flash Memory programming pins for ICP. For more detailed OCDS information, refer to the corresponding document named "Holtek e-Link for 8-bit MCU OCDS User's Guide".

Holtek e-Link Pins	EV Chip Pins	Pin Description
OCDSDA	OCDSDA	On-Chip Debug Support Data/Address input/output
OCDSCK	OCDSCK	On-Chip Debug Support Clock input
VDD	VDD	Power Supply
VSS	VSS	Ground

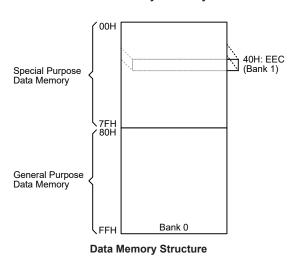
Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where temporary information is stored.

Structure

Categorised into two types, the first of these is an area of RAM, known as the Special Function Data Memory. These registers have fixed locations and are necessary for correct operation of the device. Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation. The second area of Data Memory is known as the General Purpose Data Memory, which is reserved for general purpose use. All locations within this area are read and write accessible under program control.

Rev. 1.20 22 October 25, 2023



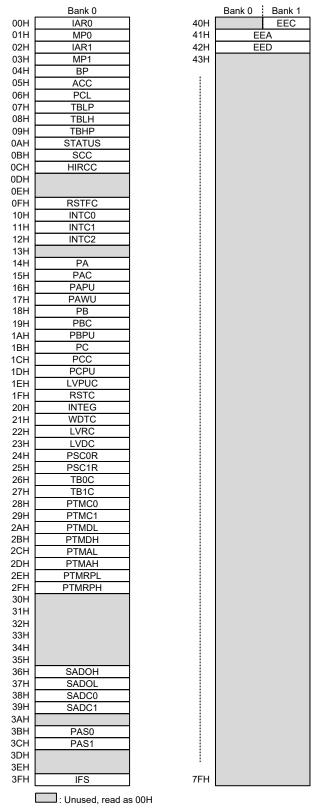
The overall Data Memory is subdivided into two banks, which are implemented in 8-bit wide Memory. The Special Purpose Data Memory registers are accessible in Bank 0, with the exception of the EEC register at address 40H, which is only accessible in Bank 1. Switching between the different Data Memory banks is achieved by properly setting the Bank Pointer to the correct value.

The start address of the Data Memory for the device is the address 00H. The address range of the Special Purpose Data Memory for the device is from 00H to 7FH while the address range of the General Purpose Data Memory is from 80H to FFH.

Special Purpose Data Memory	General Purpose Data Memory				
Located Bank	Capacity Bank: Addres				
0, 1	128×8	0: 80H~FFH			

Data Memory Summary

General Purpose Data Memory


All microcontroller programs require an area of read/write memory where temporary data can be stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose Data Memory. This area of Data Memory is fully accessible by the user programing for both reading and writing operations. By using the bit operation instructions individual bits can be set or reset under program control giving the user a large range of flexibility for bit manipulation in the Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the microcontroller, are stored. Most of the registers are both readable and writeable but some are protected and are readable only, the details of which are located under the relevant Special Function Register section. Note that for locations that are unused, any read instruction to these addresses will return the value "00H".

Rev. 1.20 23 October 25, 2023

Special Purpose Data Memory

Special Function Register Description

Most of the Special Function Register details will be described in the relevant functional section; however several registers require a separate description in this section.

Indirect Addressing Registers - IAR0, IAR1

The Indirect Addressing Registers, IAR0 and IAR1, although having their locations in normal RAM register space, do not actually physically exist as normal registers. The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified. Actions on the IAR0 and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MP0 or MP1. Acting as a pair, IAR0 and MP0 can together access data from Bank 0 while the IAR1 register together with the MP1 register can access data from any Data Memory Bank. As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers will return a result of "00H" and writing to the registers will result in no operation.

Memory Pointers - MP0, MP1

Two Memory Pointers, known as MP0 and MP1 are provided. These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data. When any operation to the relevant Indirect Addressing Registers is carried out, the actual address that the microcontroller is directed to is the address specified by the related Memory Pointer. MP0, together with Indirect Addressing Register, IAR0, are used to access data from Bank 0, while MP1 together with IAR1 are used to access data from all data banks according to the BP register. Direct Addressing can only be used with Bank 0, Bank 1 must be addressed indirectly using MP1 and IAR1.

The following example shows how to clear a section of four Data Memory locations already defined as locations adres1 to adres4.

Indirect Addressing Program Example

```
data .section 'data'
 adres1 db?
 adres2 db ?
 adres3 db?
adres4 db?
block db?
code .section at 0 'code'
org 00h
 start:
                                                   mov a, 04h
                                                                                                                                                                                                                                                                                                                                                               ; set size of block
                                                   mov block, a
                                                   mov a, offset adres1
                                                                                                                                                                                                                                                                                                                                                               ; Accumulator loaded with first RAM address
                                                                                                                                                                                                                                                                                                                                                                 ; set memory pointer with first RAM address % \left( 1\right) =\left( 1\right) +\left( 1\right)
                                                     mov mp0, a
 loop:
                                                     clr IAR0
                                                                                                                                                                                                                                                                                                                                                                 ; clear the data at address defined by MPO
                                                       inc mp0
                                                                                                                                                                                                                                                                                                                                                                   ; increment memory pointer
                                                       sdz block
                                                                                                                                                                                                                                                                                                                                                                   ; check if last memory location has been cleared
                                                       jmp loop
```

The important point to note here is that in the examples shown above, no reference is made to specific Data Memory addresses.

Bank Pointer - BP

The Data Memory is divided into two banks, Banks 0 and Bank 1. Selecting the required Data Memory area is achieved using the bit 0 of the Bank Pointer register. The Data Memory is initialised to Bank 0 after a reset, except for a WDT time-out reset in the IDLE or SLEEP Mode, in which case, the Data Memory bank remains unaffected. Directly addressing the Data Memory will always result in Bank 0 being accessed irrespective of the value of the Bank Pointer. Accessing data from Bank 1 must be implemented using the indirect addressing.

• BP Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	DMBP0
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

Bit 0 **DMBP0**: Data Memory Bank selection

0: Bank 0 1: Bank 1

Accumulator - ACC

The Accumulator is central to the operation of any microcontroller and is closely related with operations carried out by the ALU. The Accumulator is the place where all intermediate results from the ALU are stored. Without the Accumulator it would be necessary to write the result of each calculation or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in higher programming and timing overheads. Data transfer operations usually involve the temporary storage function of the Accumulator; for example, when transferring data between one user-defined register and another, it is necessary to do this by passing the data through the Accumulator as no direct transfer between two registers is permitted.

Program Counter Low Register - PCL

To provide additional program control functions, the low byte of the Program Counter is made accessible to programmers by locating it within the Special Purpose area of the Data Memory. By manipulating this register, direct jumps to other program locations are easily implemented. Loading a value directly into this PCL register will cause a jump to the specified Program Memory location, however, as the register is only 8-bit wide, only jumps within the current Program Memory page are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers - TBLP, TBHP, TBLH

These three special function registers are used to control operation of the look-up table which is stored in the Program Memory. TBLP and TBHP are the table pointers and indicate the location where the table data is located. Their value must be set before any table read commands are executed. Their value can be changed, for example using the "INC" or "DEC" instructions, allowing for easy table data pointing and reading. TBLH is the location where the high order byte of the table data is stored after a table read data instruction has been executed. Note that the lower order table data byte is transferred to a user defined location.

Rev. 1.20 26 October 25, 2023

Status Register - STATUS

This 8-bit register contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow flag (OV), power down flag (PDF), and watchdog time-out flag (TO). These arithmetic/logical operation and system management flags are used to record the status and operation of the microcontroller.

With the exception of the TO and PDF flags, bits in the status register can be altered by instructions like most other registers. Any data written into the status register will not change the TO or PDF flag. In addition, operations related to the status register may give different results due to the different instruction operations. The TO flag can be affected only by a system power-up, a WDT time-out or by executing the "CLR WDT" or "HALT" instruction. The PDF flag is affected only by executing the "HALT" or "CLR WDT" instruction or during a system power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

- C is set if an operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
- AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction; otherwise AC is cleared.
- Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.
- OV is set if an operation results in a carry into the highest-order bit but not a carry out of the highest-order bit, or vice versa; otherwise OV is cleared.
- PDF is cleared by a system power-up or executing the "CLR WDT" instruction. PDF is set by executing the "HALT" instruction.
- TO is cleared by a system power-up or executing the "CLR WDT" or "HALT" instruction. TO is set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register will not be pushed onto the stack automatically. If the contents of the status registers are important and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

STATUS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	TO	PDF	OV	Z	AC	С
R/W	_	_	R	R	R/W	R/W	R/W	R/W
POR	_	_	0	0	Х	Х	Х	х

"x": unknown

Bit 7~6 Unimplemented, read as "0"

Bit 5 **TO**: Watchdog Time-out flag

0: After power up or executing the "CLR WDT" or "HALT" instruction

1: A watchdog time-out occurred

Bit 4 **PDF**: Power down flag

0: After power up or executing the "CLR WDT" instruction

1: By executing the "HALT" instruction

Bit 3 **OV**: Overflow flag

0: No overflow

1: An operation results in a carry into the highest-order bit but not a carry out of the highest-order bit or vice versa.

Bit 2 Z: Zero flag

0: The result of an arithmetic or logical operation is not zero

1: The result of an arithmetic or logical operation is zero

Rev. 1.20 27 October 25, 2023

HT66F2630 High Accuracy / Low Current LIRC Flash MCU

Bit 1 AC: Auxiliary flag

0: No auxiliary carry

1: An operation results in a carry out of the low nibbles in addition, or no borrow from the high nibble into the low nibble in subtraction

Bit 0 C: Carry flag

0: No carry-out

1: An operation results in a carry during an addition operation or if a borrow does not take place during a subtraction operation

The "C" flag is also affected by a rotate through carry instruction.

EEPROM Data Memory

This device contains an area of internal EEPROM Data Memory. EEPROM is by its nature a non-volatile form of re-programmable memory, with data retention even when its power supply is removed. By incorporating this kind of data memory, a whole new host of application possibilities are made available to the designer. The availability of EEPROM storage allows information such as product identification numbers, calibration values, specific user data, system setup data or other product information to be stored directly within the product microcontroller. The process of reading and writing data to the EEPROM memory has been reduced to a very trivial affair.

EEPROM Data Memory Structure

The EEPROM Data Memory capacity is 64×8 bits for the device. Unlike the Program Memory and RAM Data Memory, the EEPROM Data Memory is not directly mapped into memory space and is therefore not directly addressable in the same way as the other types of memory. Read and Write operations to the EEPROM are carried out in single byte operations using an address and a data register in Bank 0 and a single control register in Bank 1.

EEPROM Registers

Three registers control the overall operation of the internal EEPROM Data Memory. These are the address register, EEA, the data register, EED and a single control register, EEC. As both the EEA and EED registers are located in Bank 0, they can be directly accessed in the same way as any other Special Function Register. The EEC register however, being located in Bank 1, can only be read from or written to indirectly using the MP1 Memory Pointer and Indirect Addressing Register, IAR1. Because the EEC control register is located at address 40H in Bank 1, the MP1 Memory Pointer must first be set to the value 40H and the Bank Pointer register, BP, set to the value, 01H, before any operations on the EEC register are executed.

Register		Bit									
Name	7	6	5	4	3	2	1	0			
EEA	_	_	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0			
EED	D7	D6	D5	D4	D3	D2	D1	D0			
EEC	_	_	_	_	WREN	WR	RDEN	RD			

EEPROM Register List

EEA Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	EEA5	EEA4	EEA3	EEA2	EEA1	EEA0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit $5\sim0$ **EEA5~EEA0**: Data EEPROM address bit $5\sim$ bit 0

Rev. 1.20 28 October 25, 2023

• EED Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7\simD0**: Data EEPROM data bit $7 \sim$ bit 0

EEC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	WREN	WR	RDEN	RD
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 WREN: Data EEPROM Write Enable

0: Disable 1: Enable

This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write operations are carried out. Clearing this bit to zero will inhibit Data EEPROM write operations.

Bit 2 WR: EEPROM Write Control

0: Write cycle has finished

1: Activate a write cycle

This is the Data EEPROM Write Control Bit and when set high by the application program will activate a write cycle. This bit will be automatically reset to zero by the hardware after the write cycle has finished. Setting this bit high will have no effect if the WREN has not first been set high.

Bit 1 RDEN: Data EEPROM Read Enable

0: Disable 1: Enable

This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read operations are carried out. Clearing this bit to zero will inhibit Data EEPROM read operations.

Bit 0 **RD**: EEPROM Read Control

0: Read cycle has finished

1: Activate a read cycle

This is the Data EEPROM Read Control Bit and when set high by the application program will activate a read cycle. This bit will be automatically reset to zero by the hardware after the read cycle has finished. Setting this bit high will have no effect if the RDEN has not first been set high.

Note: 1. The WREN, WR, RDEN and RD cannot be set high at the same time in one instruction. The WR and RD cannot be set high at the same time.

- 2. Ensure that the f_{SUB} clock is stable before executing the write operation.
- 3. Ensure that the write operation is totally complete before changing the EEC register content.

Reading Data from the EEPROM

To read data from the EEPROM, the EEPROM address of the data to be read must first be placed in the EEA register. Then the read enable bit, RDEN, in the EEC register must be set high to enable the read function. If the RD bit in the EEC register is now set high, a read cycle will be initiated. Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set. When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be read from the EED register. The data will remain in the EED register until another read or write operation is executed. The application program can poll the RD bit to determine when the data is valid for reading.

Rev. 1.20 29 October 25, 2023

Writing Data to the EEPROM

To write data to the EEPROM, the EEPROM address of the data to be written must first be placed in the EEA register and the data placed in the EED register. To initiate a write cycle, the write enable bit, WREN, in the EEC register must first be set high to enable the write function. After this, the WR bit in the EEC register must be immediately set high to initiate a write cycle. These two instructions must be executed in two consecutive instruction cycles. The global interrupt bit EMI should also first be cleared before implementing any write operations, and then set again after the write cycle has started. Note that setting the WR bit high will not initiate a write cycle if the WREN bit has not been set. As the EEPROM write cycle is controlled using an internal timer whose operation is asynchronous to microcontroller system clock, a certain time will elapse before the data will have been written into the EEPROM. Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt. When the write cycle terminates, the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the data has been written to the EEPROM. The application program can therefore poll the WR bit to determine when the write cycle has ended.

Write Protection

Protection against inadvertent write operation is provided in several ways. After the device is powered-on the Write Enable bit in the control register will be cleared preventing any write operations. Also at power-on the Bank Pointer register, BP, will be reset to zero, which means that Data Memory Bank 0 will be selected. As the EEPROM control register is located in Bank 1, this adds a further measure of protection against spurious write operations. During normal program operation, ensuring that the Write Enable bit in the control register is cleared will safeguard against incorrect write operations.

EEPROM Interrupt

The EEPROM write interrupt is generated when an EEPROM write cycle has ended. The EEPROM interrupt must first be enabled by setting the DEE bit in the relevant interrupt register. When an EEPROM write cycle ends, the DEF request flag will be set high. If the global and EEPROM interrupts are enabled and the stack is not full, a jump to the EEPROM Interrupt vector will take place. When the interrupt is serviced the EEPROM interrupt flag will be automatically reset.

Programming Considerations

Care must be taken that data is not inadvertently written to the EEPROM. Protection can be enhanced by ensuring that the Write Enable bit is normally cleared to zero when not writing. Also the Bank Pointer register, BP, could be normally cleared to zero as this would inhibit access to Bank 1 where the EEPROM control register exists. Although certainly not necessary, consideration might be given in the application program to the checking of the validity of new write data by a simple read back process.

When writing data the WR bit must be set high immediately after the WREN bit has been set high, to ensure the write cycle executes correctly. The global interrupt bit EMI should also be cleared before a write cycle is executed and then re-enabled after the write cycle starts. Note that the device should not enter the IDLE or SLEEP mode until the EEPROM read or write operation is totally complete. Otherwise, the EEPROM read or write operation will fail.

Rev. 1.20 30 October 25, 2023

Programming Examples

Reading data from the EEPROM - polling method

```
MOV A, EEPROM ADRES ; user defined address
MOV EEA, A
                   ; set memory pointer MP1
; MP1 points to EEC register
MOV A, 40H
MOV MP1, A
MOV A, 01H
                      ; set bank pointer BP
MOV BP, A
               ; set RDEN bit, enable read operations ; start Read Cycle - set RD bit
SET IAR1.1
SET IAR1.0
BACK:
SZ IAR1.0 ; check for read cycle end
JMP BACK
CLR IAR1
                      ; disable EEPROM read if no more read operations are required
CLR BP
MOV A, EED
                      ; move read data to register
MOV READ DATA, A
```

Note: For each read operation, the address register should be re-specified followed by setting the RD bit high to activate a read cycle even if the target address is consecutive.

Writing Data to the EEPROM - polling method

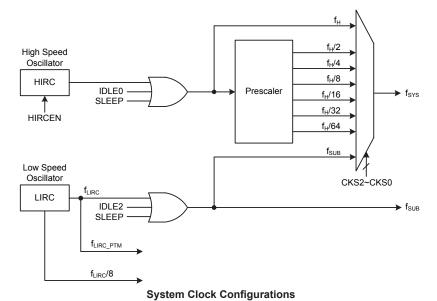
```
MOV A, EEPROM ADRES ; user defined address
MOV EEA, A
MOV A, EEPROM DATA
                     ; user defined data
MOV EED, A
MOV A, 40H
                     ; set memory pointer MP1
MOV MP1, A
                       ; MP1 points to EEC register
MOV A, 01H
                       ; set bank pointer BP
MOV BP, A
CLR EMI
                     ; set WREN bit, enable write operations
SET IAR1.3
SET IAR1.2
                       ; start Write Cycle - set WR bit - executed immediately
                       ; after set WREN bit
SET EMI
BACK:
                     ; check for write cycle end
SZ IAR1.2
JMP BACK
CLR BP
```

Rev. 1.20 31 October 25, 2023

Oscillators

Various oscillator options offer the user a wide range of functions according to their various application requirements. The flexible features of the oscillator functions ensure that the best optimisation can be achieved in terms of speed and power saving. Oscillator operations are selected through a combination of configuration option and the relevant control registers.

Oscillator Overview


In addition to being the source of the main system clock the oscillators also provide clock sources for the Watchdog Timer and Time Base Interrupts. The fully integrated internal oscillators, requiring no external components, are provided to form a wide range of both fast and slow system oscillators. The higher frequency oscillator provides higher performance but carry with it the disadvantage of higher power requirements, while the opposite is of course true for the lower frequency oscillator. With the capability of dynamically switching between fast and slow system clock, the device has the flexibility to optimize the performance/power ratio, a feature especially important in power sensitive portable applications.

Туре	Name	Frequency
Internal High Speed RC	HIRC	2/4/8MHz
Internal Low Speed RC	LIRC	32kHz

Oscillator Types

System Clock Configurations

There are two oscillator sources, one high speed oscillator and one low speed oscillator. The high speed system clock is sourced from the internal 2/4/8MHz RC oscillator, HIRC. The low speed oscillator is the internal 32kHz RC oscillator, LIRC. Selecting whether the low or high speed oscillator is used as the system oscillator is implemented using the CKS2~CKS0 bits in the SCC register and the system clock can be dynamically selected.

Rev. 1.20 32 October 25, 2023

Internal High Speed RC Oscillator - HIRC

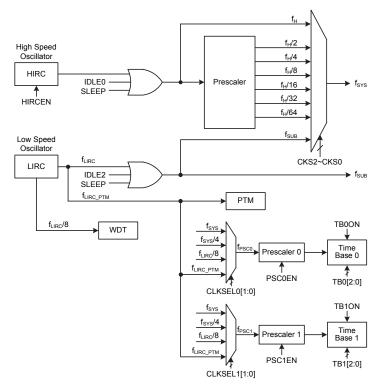
The internal RC oscillator is a fully integrated system oscillator requiring no external components. The internal RC oscillator has three fixed frequencies of 2MHz, 4MHz and 8MHz, which is selected using a configuration option. The HIRC1~HIRC0 bits in the HIRCC register must also be setup to match the selected configuration option frequency. Setting up these bits is necessary to ensure that the HIRC frequency accuracy specified in the A.C. Characterisites is achieved. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised. Note that this internal system clock option requires no external pins for its operation.

Internal 32kHz Oscillator - LIRC

The Internal 32kHz System Oscillator is a fully integrated low frequency RC oscillator with a typical frequency of 32kHz, requiring no external components for its implementation. The LIRC oscillator also provides a f_{LIRC_PTM} and a $f_{LIRC}/8$ clock for some certain peripherals. Device trimming during the manufacturing process and the inclusion of internal frequency compensation circuits are used to ensure that the influence of the power supply voltage, temperature and process variations on the oscillation frequency are minimised.

Operating Modes and System Clocks

Present day applications require that their microcontrollers have high performance but often still demand that they consume as little power as possible, conflicting requirements that are especially true in battery powered portable applications. The fast clocks required for high performance will by their nature increase current consumption and of course vice versa, lower speed clocks reduce current consumption. As Holtek has provided the device with both high and low speed clock sources and the means to switch between them dynamically, the user can optimise the operation of their microcontroller to achieve the best performance/power ratio.


System Clocks

The device has many different clock sources for both the CPU and peripheral function operation. By providing the user with a wide range of clock options using register programming, a clock system can be configured to obtain maximum application performance.

The main system clock, can come from either a high frequency, $f_{\rm H}$, or low frequency, $f_{\rm SUB}$, source, and is selected using the CKS2~CKS0 bits in the SCC register. The high speed system clock is sourced from the HIRC oscillator. The low speed system clock source is sourced from the LIRC oscillator. The other choice, which is a divided version of the high speed system oscillator has a range of $f_{\rm H}/2\sim f_{\rm H}/64$.

Rev. 1.20 33 October 25, 2023

Device Clock Configurations

Note: When the system clock source f_{SYS} is switched to f_{SUB} from f_H , the high speed oscillator will stop to conserve the power or continue to oscillate to provide the clock source, $f_H \sim f_H/64$, for peripheral circuit to use, which is determined by configuring the corresponding high speed oscillator enable control bit.

System Operation Modes

There are six different modes of operation for the microcontroller, each one with its own special characteristics and which can be chosen according to the specific performance and power requirements of the application. There are two modes allowing normal operation of the microcontroller, the FAST Mode and SLOW Mode. The remaining four modes, the SLEEP, IDLE0, IDLE1 and IDLE2 Mode are used when the microcontroller CPU is switched off to conserve power.

Operation	CPU		Register Se	tting		£	£	
Mode	CPU	FHIDEN	FSIDEN	CKS2~CKS0	f _{sys}	fн	f _{SUB}	f _{LIRC}
FAST	On	Х	Х	000~110	f _H ~f _H /64	On	On	On
SLOW	On	Х	Х	111	f _{SUB}	On/Off (1)	On	On
IDLE0	Off	0	1	000~110	Off	Off	On	On
IDLEU	Oii	U	ı	111	On	Oii	OII	Oli
IDLE1	Off	1	1	XXX	On	On	On	On
IDLE2	Off	1	0	000~110	On	On	Off	On
IDLEZ		I	U	111	Off	On	Oll	
SLEEP	Off	0	0	XXX	Off	Off	Off	On/Off (2)

"x": Don't care

Note: 1. The f_H clock will be switched on or off by configuring the corresponding oscillator enable bit in the SLOW mode.

2. The f_{LIRC} clock can be switched on or off which is controlled by the WDT function being enabled or disabled in the SLEEP mode.

Rev. 1.20 34 October 25, 2023

FAST Mode

This is one of the main operating modes where the microcontroller has all of its functions operational and where the system clock is provided by the high speed oscillator. This mode operates allowing the microcontroller to operate normally with a clock source which will come from the high speed oscillator, HIRC. The high speed oscillator will however first be divided by a ratio ranging from 1 to 64, the actual ratio being selected by the CKS2~CKS0 bits in the SCC register. Although a high speed oscillator is used, running the microcontroller at a divided clock ratio reduces the operating current.

SLOW Mode

This is also a mode where the microcontroller operates normally although now with a slower speed clock source. The clock source used will be from f_{SUB} , which is derived from the LIRC oscillator.

SLEEP Mode

The SLEEP Mode is entered when a HALT instruction is executed and when the FHIDEN and FSIDEN bit are low. In the SLEEP mode the CPU will be stopped. The f_{SUB} clock provided to the peripheral function will also be stopped, too. However the f_{LIRC} clock can continues to operate if the WDT function is enabled.

IDLE0 Mode

The IDLE0 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is low and the FSIDEN bit in the SCC register is high. In the IDLE0 Mode the CPU will be switched off but the low speed oscillator will be turned on to drive some peripheral functions.

IDLE1 Mode

The IDLE1 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is high. In the IDLE1 Mode the CPU will be switched off but both the high and low speed oscillators will be turned on to provide a clock source to keep some peripheral functions operational.

IDLE2 Mode

The IDLE2 Mode is entered when a HALT instruction is executed and when the FHIDEN bit in the SCC register is high and the FSIDEN bit in the SCC register is low. In the IDLE2 Mode the CPU will be switched off but the high speed oscillator will be turned on to provide a clock source to keep some peripheral functions operational.

Control Registers

The SCC and HIRCC registers are used to control the system clock and the corresponding oscillator configurations.

Register	r Bit							
Name	7	6	5	4	3	2	1	0
SCC	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
HIRCC	_	_	_	_	HIRC1	HIRC0	HIRCF	HIRCEN

System Operating Mode Control Register List

Rev. 1.20 35 October 25, 2023

SCC Register

Bit	7	6	5	4	3	2	1	0
Name	CKS2	CKS1	CKS0	_	_	_	FHIDEN	FSIDEN
R/W	R/W	R/W	R/W	_	_	_	R/W	R/W
POR	1	1	1	_	_	_	0	0

Bit 7~5 CKS2~CKS0: System clock selection

 $\begin{array}{c} 000: f_H \\ 001: f_H/2 \\ 010: f_H/4 \\ 011: f_H/8 \\ 100: f_H/16 \\ 101: f_H/32 \\ 110: f_H/64 \\ 111: f_{SUB} \end{array}$

These three bits are used to select which clock is used as the system clock source. In addition to the system clock source directly derived from f_H or f_{SUB} , a divided version of the high speed system oscillator can also be chosen as the system clock source.

Bit 4~2 Unimplemented, read as "0"

Bit 1 FHIDEN: High Frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the high speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

Bit 0 FSIDEN: Low Frequency oscillator control when CPU is switched off

0: Disable 1: Enable

This bit is used to control whether the low speed oscillator is activated or stopped when the CPU is switched off by executing an "HALT" instruction.

HIRCC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	HIRC1	HIRC0	HIRCF	HIRCEN
R/W	_	_	_	_	R/W	R/W	R	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 HIRC1~HIRC0: HIRC frequency selection

00: 2MHz 01: 4MHz 10: 8MHz 11: 2MHz

When the HIRC oscillator is enabled or the HIRC frequency selection is changed by application program, the clock frequency will automatically be changed after the HIRCF flag is set to 1. It is recommended that the HIRC frequency selected by these bits is the same as the frequency determined by the configuration option to ensure a higer HIRC frequency accuracy spedified in the A.C. chanracteristics.

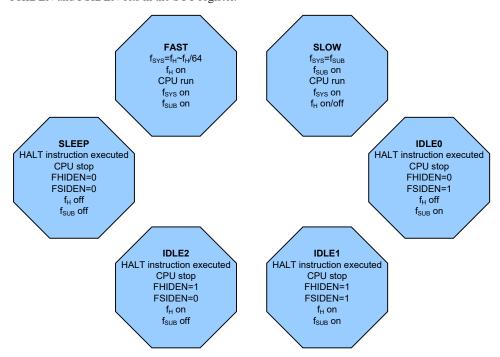
Bit 1 HIRCF: HIRC oscillator stable flag

0: HIRC unstable 1: HIRC stable

This bit is used to indicate whether the HIRC oscillator is stable or not. When the HIRCEN bit is set to 1 to enable the HIRC oscillator, the HIRCF bit will first be cleared to 0 and then set to 1 after the HIRC oscillator is stable.

Bit 0 HIRCEN: HIRC oscillator enable control

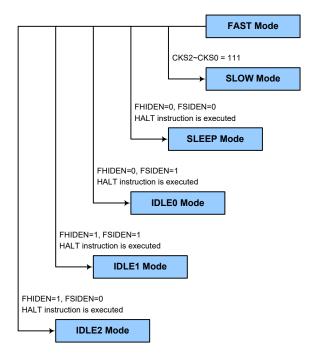
0: Disable 1: Enable


Rev. 1.20 36 October 25, 2023

Operating Mode Switching

The device can switch between operating modes dynamically allowing the user to select the best performance/power ratio for the present task in hand. In this way microcontroller operations that do not require high performance can be executed using slower clocks thus requiring less operating current and prolonging battery life in portable applications.

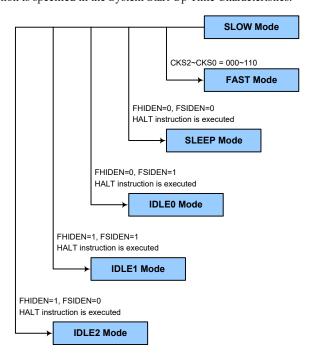
In simple terms, mode switching between the FAST Mode and SLOW Mode is executed using the CKS2~CKS0 bits in the SCC register while mode switching from the FAST/SLOW Modes to the SLEEP/IDLE Modes is executed via the HALT instruction. When a HALT instruction is executed, whether the device enters the IDLE Mode or the SLEEP Mode is determined by the condition of the FHIDEN and FSIDEN bits in the SCC register.


FAST Mode to SLOW Mode Switching

When running in the FAST Mode, which uses the high speed system oscillator, and therefore consumes more power, the system clock can switch to run in the SLOW Mode by set the CKS2~CKS0 bits to "111" in the SCC register. This will then use the low speed system oscillator which will consume less power. Users may decide to do this for certain operations which do not require high performance and can subsequently reduce power consumption.

The SLOW Mode system clock is sourced from the LIRC oscillator and therefore requires this oscillator to be stable before full mode switching occurs.

Rev. 1.20 37 October 25, 2023



SLOW Mode to FAST Mode Switching

In the SLOW mode the system clock is derived from f_{SUB} . When system clock is switched back to the FAST mode from f_{SUB} , the CKS2~CKS0 bits should be set to "000"~"110" and then the system clock will respectively be switched to f_{H} ~ f_{H} /64.

However, if f_H is not used in the SLOW mode and thus switched off, it will take some time to reoscillate and stabilise when switching to the FAST mode from the SLOW Mode. This is monitored using the HIRCF bit in the HIRCC register. The time duration required for the high speed system oscillator stabilisation is specified in the System Start Up Time Characteristics.

Rev. 1.20 38 October 25, 2023

Entering the SLEEP Mode

There is only one way for the device to enter the SLEEP Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "0". In this mode all the clocks and functions will be switched off except the WDT function. When this instruction is executed under the conditions described above, the following will occur:

- The system clock will be stopped and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Entering the IDLEO Mode

There is only one way for the device to enter the IDLE0 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "0" and the FSIDEN bit in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H clock will be stopped and the application program will stop at the "HALT" instruction, but the f_{SUB} clock will be on.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Entering the IDLE1 Mode

There is only one way for the device to enter the IDLE1 Mode and that is to execute the "HALT" instruction in the application program with both the FHIDEN and FSIDEN bits in the SCC register equal to "1". When this instruction is executed under the conditions described above, the following will occur:

- The f_H and f_{SUB} clocks will be on but the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Entering the IDLE2 Mode

There is only one way for the device to enter the IDLE2 Mode and that is to execute the "HALT" instruction in the application program with the FHIDEN bit in the SCC register equal to "1" and the FSIDEN bit in the SCC register equal to "0". When this instruction is executed under the conditions described above, the following will occur:

Rev. 1.20 39 October 25, 2023

- The f_H clock will be on but the f_{SUB} clock will be off and the application program will stop at the "HALT" instruction.
- The Data Memory contents and registers will maintain their present condition.
- The I/O ports will maintain their present conditions.
- In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO, will be cleared.
- The WDT will be cleared and resume counting if the WDT function is enabled. If the WDT function is disabled, the WDT will be cleared and then stopped.

Standby Current Considerations

As the main reason for entering the SLEEP or IDLE Mode is to keep the current consumption of the device to as low a value as possible, perhaps only in the order of several micro-amps except in the IDLE1 and IDLE2 Mode, there are other considerations which must also be taken into account by the circuit designer if the power consumption is to be minimised. Special attention must be made to the I/O pins on the device. All high-impedance input pins must be connected to either a fixed high or low level as any floating input pins could create internal oscillations and result in increased current consumption. This also applies to the device which has different package types, as there may be unbonded pins. These must either be set as outputs or if set as inputs must have pull-high resistors connected.

Care must also be taken with the loads, which are connected to I/O pins, which are set as outputs. These should be placed in a condition in which minimum current is drawn or connected only to external circuits that do not draw current, such as other CMOS inputs. Also note that additional standby current will also be required if the LIRC oscillator has enabled.

In the IDLE1 and IDLE2 Mode the high speed oscillator is on, if the peripheral function clock source is derived from the high speed oscillator, the additional standby current will also be perhaps in the order of several hundred micro-amps.

Wake-up

To minimise power consumption the device can enter the SLEEP or any IDLE Mode, where the CPU will be switched off. However, when the device is woken up again, it will take a considerable time for the original system oscillator to restart, stabilise and allow normal operation to resume.

After the system enters the SLEEP or IDLE Mode, it can be woken up from one of various sources listed as follows:

- · An external reset
- · An external falling edge on Port A
- · A system interrupt
- · A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset, however, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Although both of these wake-up methods will initiate a reset operation, the actual source of the wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a system power-up or executing the clear Watchdog Timer instructions and is set when executing the "HALT" instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only resets the Program Counter and Stack Pointer, the other flags remain in their original status.

Rev. 1.20 40 October 25, 2023

Each pin on Port A can be set using the PAWU register to permit a negative transition on the pin to wake-up the system. When a pin wake-up occurs, the program will resume execution at the instruction following the "HALT" instruction. If the system is woken up by an interrupt, then two possible situations may occur. The first is where the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the program will resume execution at the instruction following the "HALT" instruction. In this situation, the interrupt which woke-up the device will not be immediately serviced, but will rather be serviced later when the related interrupt is finally enabled or when a stack level becomes free. The other situation is where the related interrupt is enabled and the stack is not full, in which case the regular interrupt response takes place. If an interrupt request flag is set high before entering the SLEEP or IDLE Mode, the wake-up function of the related interrupt will be disabled.

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to unknown locations, due to certain uncontrollable external events such as electrical noise.

Watchdog Timer Clock Source

The Watchdog Timer clock source is provided by the internal clock, $f_{LIRC}/8$ which is sourced from the LIRC oscillator. The LIRC internal oscillator has an approximate frequency of 32kHz and this specified internal clock period can vary with V_{DD} , temperature and process variations. The Watchdog Timer source clock is then subdivided by a ratio of 2^8 to 2^{18} to give longer timeouts, the actual value being chosen using the WS2~WS0 bits in the WDTC register.

Watchdog Timer Control Register

A single register, WDTC, controls the required time-out period as well as the enable/disable operation.

WDTC Register

Bit	7	6	5	4	3	2	1	0
Name	WE4	WE3	WE2	WE1	WE0	WS2	WS1	WS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	0	1	0

Bit 7~3 **WE4~WE0**: WDT function software control

10101: Disable 01010: Enable

Other values: Reset MCU

When these bits are changed to any other values due to environmental noise the microcontroller will be reset; this reset operation will be activated after a delay time, t_{SRESET}, and the WRF bit in the RSTFC register will be set high.

Bit 2~0 WS2~WS0: WDT time-out period selection

 $000: \, 2^8/f_{LIRC}/8 \\ 001: \, 2^{10}/f_{LIRC}/8$

 $010: \, 2^{12}/f_{LIRC}/8 \\ 011: \, 2^{14}/f_{LIRC}/8$

100: 215/f_{LIRC}/8

101: 2¹⁶/f_{LIRC}/8

110: $2^{17}/f_{LIRC}/8$

111: 218/f_{LIRC}/8

These three bits determine the division ratio of the Watchdog Timer source clock, which in turn determines the timeout period.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	Х	0	0

"x": unknown

Bit 7~4 Unimplemented, read as "0"

Bit 3 RSTF: Reset control register software reset flag

Refer to the RES Pin Reset section.

Bit 2 LVRF: LVR function reset flag

Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

Bit 0 WRF: WDT control register software reset flag

0: Not occurred 1: Occurred

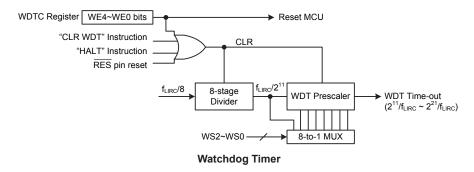
This bit is set to 1 by the WDT Control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

Watchdog Timer Operation

The Watchdog Timer operates by providing a device reset when its timer overflows. This means that in the application program and during normal operation the user has to strategically clear the Watchdog Timer before it overflows to prevent the Watchdog Timer from executing a reset. This is done using the clear watchdog instruction. If the program malfunctions for whatever reason, jumps to an unknown location, or enters an endless loop, the clear instruction will not be executed in the correct manner, in which case the Watchdog Timer will overflow and reset the device. There are five bits, WE4~WE0, in the WDTC register to offer the enable/disable control and reset control of the Watchdog Timer. The WDT function will be disabled when the WE4~WE0 bits are set to a value of 10101B while the WDT function will be enabled if the WE4~WE0 bits are equal to 01010B. If the WE4~WE0 bits are set to any other values, other than 01010B and 10101B, it will reset the device after a delay time, t_{SRESET}. After power on these bits will have a value of 01010B.

WE4~WE0 Bits	WDT Function
10101B	Disable
01010B	Enable
Any other value	Reset MCU

Watchdog Timer Enable/Disable Control


Under normal program operation, a Watchdog Timer time-out will initialise a device reset and set the status bit TO. However, if the system is in the SLEEP or IDLE Mode, when a Watchdog Timer time-out occurs, the TO bit in the status register will be set and only the Program Counter and Stack Pointer will be reset. Four methods can be adopted to clear the contents of the Watchdog Timer. The first is a WDTC software reset, which means a certain value except 01010B and 10101B written into the WE4~WE0 bits, the second is using the Watchdog Timer software clear instruction, the third is via a HALT instruction. The last is an external hardware reset, which means a low level on the external reset pin if the external reset pin function is selected by configuring the RSTC register.

There is only one method of using software instruction to clear the Watchdog Timer. That is to use the single "CLR WDT" instruction to clear the WDT.

Rev. 1.20 42 October 25, 2023

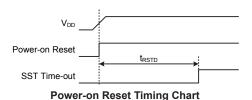
The maximum time-out period is when the 2¹⁸ division ratio is selected. With a 32kHz LIRC oscillator clock divided by 8 as its source clock, this will give a maximum watchdog period of around 66s for the 2¹⁸ division ratio, and a minimum timeout of 64ms for the 2⁸ division ration.

Reset and Initialisation

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to some predetermined condition irrespective of outside parameters. The most important reset condition is after power is first applied to the microcontroller. In this case, internal circuitry will ensure that the microcontroller, after a short delay, will be in a well-defined state and ready to execute the first program instruction. After this power-on reset, certain important internal registers will be set to defined states before the program commences. One of these registers is the Program Counter, which will be reset to zero forcing the microcontroller to begin program execution from the lowest Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a reset condition when the device is running. One example of this is where after power has been applied and the device is already running, the \overline{RES} line is forcefully pulled low. In such a case, known as a normal operation reset, some of the registers remain unchanged allowing the device to proceed with normal operation after the reset line is allowed to return high.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the $\overline{\text{RES}}$ reset is implemented in situations where the power supply voltage falls below a certain threshold. Another type of reset is when the Watchdog Timer overflows and resets the microcontroller. All types of reset operations result in different register conditions being setup.

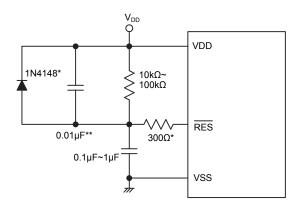

Reset Functions

There are several ways in which a microcontroller reset can occur, through events occurring both internally and externally.

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to the microcontroller. As well as ensuring that the Program Memory begins execution from the first memory address, a power-on reset also ensures that certain other registers are preset to known conditions. All the I/O port and port control registers will power up in a high condition ensuring that all pins will be first set to inputs.

Rev. 1.20 43 October 25, 2023

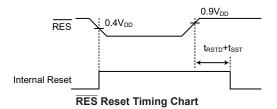


RES Pin Reset

Although the microcontroller has an internal RC reset function, if the V_{DD} power supply rise time is not fast enough or does not stabilise quickly at power-on, the internal reset function may be incapable of providing proper reset operation. For this reason it is recommended that an external RC network is connected to the \overline{RES} pin, whose additional time delay will ensure that the \overline{RES} pin remains low for an extended period to allow the power supply to stabilise. During this time delay, normal operation of the microcontroller will be inhibited. After the \overline{RES} line reaches a certain voltage value, the reset delay time t_{RSTD} is invoked to provide an extra delay time after which the microcontroller will begin normal operation. The abbreviation SST in the figures stands for System Start-up Timer.

For most applications a resistor connected between VDD and the \overline{RES} pin and a capacitor connected between VSS and the \overline{RES} pin will provide a suitable external reset circuit. Any wiring connected to the \overline{RES} pin should be kept as short as possible to minimise any stray noise interference.

For applications that operate within an environment where more noise is present the Enhanced Reset Circuit shown is recommended.



Note: * It is recommended that this component is added for added ESD protection.

** It is recommended that this component is added in environments where power line noise is significant.

External RES Circuit

Pulling the \overline{RES} Pin low using external hardware will also execute a device reset. In this case, as in the case of other resets, the Program Counter will reset to zero and program execution initiated from this point.

Rev. 1.20 44 October 25, 2023

There is an internal reset control register, RSTC, which is used to provide a reset when the device operates abnormally due to the environmental noise interference. If the content of the RSTC register is set to any value other than 01010101B or 10101010B, it will reset the device after a delay time, t_{SRESET}. After power on the register will have a value of 01010101B.

RSTC7 ~ RSTC0 Bits	Reset Function
01010101B	PA7
10101010B	RES
Any other value	Reset MCU

Internal Reset Function Control

RSTC Register

Bit	7	6	5	4	3	2	1	0
Name	RSTC7	RSTC6	RSTC5	RSTC4	RSTC3	RSTC2	RSTC1	RSTC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	1	0	1	0	1	0	1

Bit 7~0 **RSTC7~RSTC0**: Reset function control

01010101: PA7 10101010: RES

Other values: Reset MCU

If these bits are changed due to adverse environmental conditions, the microcontroller will be reset. The reset operation will be activated after a delay time, t_{SRESET}, and the RSTF bit in the RSTFC register will be set high. All resets will reset this register to POR value except the WDT time out hardware warm reset.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	Х	0	0

"x": unknown

Bit 7~4 Unimplemented, read as "0"

Bit 3 RSTF: Reset control register software reset flag

0: Not occurred 1: Occurred

This bit is set to 1 by the RSTC control register software reset and cleared by the application program. Note that this bit can only be cleared to 0 by the application program.

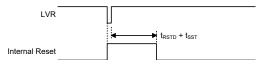
Bit 2 LVRF: LVR function reset flag

Refer to the Low Voltage Reset section.

Bit 1 LRF: LVR control register software reset flag

Refer to the Low Voltage Reset section.

Bit 0 WRF: WDT control register software reset flag


Refer to the Watchdog Timer Control Register section.

Rev. 1.20 45 October 25, 2023

Low Voltage Reset - LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the device and provides an MCU reset should the value fall below a certain predefined level.

If the supply voltage of the device drops to within a range of $0.9V \sim V_{LVR}$ such as might occur when changing the battery in battery powered applications, the LVR will automatically reset the device internally and the LVRF bit in the RSTFC register will also be set high. For a valid LVR signal, a low supply voltage, i.e., a voltage in the range between $0.9V \sim V_{LVR}$ must exist for a time greater than that specified by t_{LVR} in the LVD/LVR characteristics. If the low supply voltage state duration does not exceed this value, the LVR will ignore the low supply voltage and will not perform a reset function. The actual V_{LVR} value can be selected by the LVS bits in the LVRC register. If the LVS7~LVS0 bits are changed to some different values by environmental noise, the LVR will reset the device after a delay time, t_{SRESET} . When this happens, the LRF bit in the RSTFC register will be set high. After power on the register will have the value of 01100110B. Note that the LVR function will be automatically disabled when the device enters the IDLE or SLEEP mode.

Low Voltage Reset Timing Chart

LVRC Register

Bit	7	6	5	4	3	2	1	0
Name	LVS7	LVS6	LVS5	LVS4	LVS3	LVS2	LVS1	LVS0
R/W								
POR	0	1	1	0	0	1	1	0

Bit 7~0 LVS7~LVS0: LVR Voltage Select control

01100110: 1.7V 01010101: 1.9V 00110011: 2.55V 10011001: 3.15V 10101010: 3.8V 11110000: LVR disable

Any other value: Generates MCU reset – register is reset to POR value

When an actual low voltage condition occurs, as specified by one of the five defined LVR voltage values above, an MCU reset will be generated. The reset operation will be activated after the low voltage condition keeps more than a t_{LVR} time. In this situation the register contents will remain the same after such a reset occurs.

Any register value, other than the five defined LVR values and disable option shown above, will also result in the generation of an MCU reset. The reset operation will be activated after a delay time, t_{SRESET}. However in this situation the register contents will be reset to the POR value.

RSTFC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	RSTF	LVRF	LRF	WRF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	Х	0	0

"x"· unknown

Bit 7~4 Unimplemented, read as "0"

Rev. 1.20 46 October 25, 2023

Bit 3 RSTF: Reset control register software reset flag

Refer to the \overline{RES} Pin Reset section.

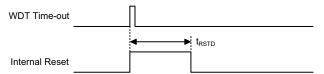
Bit 2 LVRF: LVR function reset flag

0: Not occur 1: Occurred

This bit is set high when a specific Low Voltage Reset situation condition occurs. This bit can only be cleared to zero by the application program.

Bit 1 LRF: LVR control register software reset flag

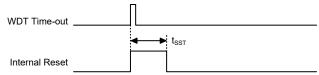
0: Not occur 1: Occurred


This bit is set high if the LVRC register contains any non-defined LVR voltage register values. This in effect acts like a software-reset function. This bit can only be cleared to zero by the application program.

Bit 0 WRF: WDT control register software reset flag

Refer to the Watchdog Timer Control Register section.

Watchdog Time-out Reset during Normal Operation


The Watchdog time-out Reset during normal operations in the FAST or SLOW mode is the same as a hardware \overline{RES} pin reset except that the Watchdog time-out flag TO will be set to "1".

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during SLEEP or IDLE Mode

The Watchdog time-out Reset during SLEEP or IDLE Mode is a little different from other kinds of reset. Most of the conditions remain unchanged except that the Program Counter and the Stack Pointer will be cleared to "0" and the TO flag will be set to "1". Refer to the System Start Up Time Characteristics for t_{SST} details.

WDT Time-out Reset during SLEEP or IDLE Timing Chart

Reset Initial Conditions

The different types of reset described affect the reset flags in different ways. These flags, known as PDF and TO are located in the status register and are controlled by various microcontroller operations, such as the SLEEP or IDLE Mode function or Watchdog Timer. The reset flags are shown in the table:

то	PDF	Reset Conditions				
0	0	Power-on reset				
u	u	RES or LVR reset during FAST or SLOW Mode operation				
1	u	WDT time-out reset during FAST or SLOW Mode operation				
1	1	WDT time-out reset during IDLE or SLEEP Mode operation				

"u" stands for unchanged

The following table indicates the way in which the various components of the microcontroller are affected after a power-on reset occurs.

Item	Condition After Reset
Program Counter	Reset to zero
Interrupts	All interrupts will be disabled
WDT, Time Bases	Cleared after reset, WDT begins counting
Timer Module	Timer Module will be turned off
Input/Output Ports	I/O ports will be set as inputs
Stack Pointer	Stack Pointer will point to the top of the stack

The different kinds of resets all affect the internal registers of the microcontroller in different ways. To ensure reliable continuation of normal program execution after a reset occurs, it is important to know what condition the microcontroller is in after a particular reset occurs. The following table describes how each type of reset affects each of the microcontroller internal registers. Note that as more than one package type exists, the table will reflect the situation for the larger package type.

	D (DEC D (
Register	Reset (Power On)	RES Reset (Normal Operation)	LVR Reset (Normal Operation)	WDT Time-out (Normal Operation)	WDT Time-out (IDLE/SLEEP)
IAR0	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
MP0	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
IAR1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
MP1	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
BP	0	0	0	0	u
ACC	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
PCL	0000 0000	0000 0000	0000 0000	0000 0000	0000 0000
TBLP	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
TBLH	xxxx xxxx	uuuu uuuu	uuuu uuuu	uuuu uuuu	uuuu uuuu
ТВНР	x x x	uuu	uuu	u u u	uuu
STATUS	00 xxxx	uu uuuu	uu uuuu	1u uuuu	11 uuuu
SCC	11100	11100	11100	11100	uuuuu
HIRCC	0000	0000	0000	0000	uuuu
RSTFC	0 x 0 0	uuuu	u1uu	uuuu	uuuu
INTC0	-000 0000	-000 0000	-000 0000	-000 0000	-uuu uuuu
INTC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
INTC2	0000	0000	0000	0000	uuuu
PA	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PAPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PAWU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
РВ	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PBC	1111 1111	1111 1111	1111 1111	1111 1111	uuuu uuuu
PBPU	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
LVPUC	0	0	0	0	u
RSTC	0101 0101	0101 0101	0101 0101	0101 0101	uuuu uuuu
INTEG	0000	0000	0000	0000	uuuu
WDTC	0101 0010	0101 0010	0101 0010	0101 0010	uuuu uuuu
LVRC	0110 0110	0110 0110	uuuu uuuu	0110 0110	uuuu uuuu
LVDC	00 0000	00 0000	00 0000	00 0000	uu uuuu
PSC0R	000	000	000	000	uuu
PSC1R	000	000	000	000	u u u

Rev. 1.20 48 October 25, 2023

Register	Reset	RES Reset	LVR Reset	WDT Time-out	WDT Time-out
Register	(Power On)	(Normal Operation)	(Normal Operation)	(Normal Operation)	(IDLE/SLEEP)
TB0C	0000	0000	0000	0000	uuuu
TB1C	0000	0000	0 0 0 0	0 0 0 0	uuuu
PTMC0	0000 0	0000 0	0000 0	0000 0	uuuu u
PTMC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMDL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMDH	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMAL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMAH	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMRPL	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PTMRPH	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
SADOH		xxxx xxxx	xxxx xxxx	****	uuuu uuuu (ADRFS=0)
SADOR	xxxx xxxx	****	****	xxxx xxxx	uuuu (ADRFS=1)
SADOL	xxxx	x x x x	x x x x	x x x x	uuuu (ADRFS=0)
OADOL	****	****	****	****	uuuu uuuu (ADRFS=1)
SADC0	000000	000000	000000	000000	uuuuuu
SADC1	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PAS0	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
PAS1	00 00	00 00	00 00	00 00	uu uu
IFS	0000	0000	0000	0000	uuuu
EEA	00 0000	00 0000	00 0000	00 0000	uu uuuu
EED	0000 0000	0000 0000	0000 0000	0000 0000	uuuu uuuu
EEC	0000	0000	0000	0000	uuuu

Note: "u" stands for unchanged
"x" stands for unknown
"-" stands for unimplemented

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output designation of every pin fully under user program control, pull-high selections for all ports and wake-up selections on certain pins, the user is provided with an I/O structure to meet the needs of a wide range of application possibilities.

The device provides bidirectional input/output lines labeled with port names PA~PB. These I/O ports are mapped to the RAM Data Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these I/O ports can be used for input and output operations. For input operation, these ports are non-latching, which means the inputs must be ready at the T2 rising edge of instruction "MOV A, [m]", where m denotes the port address. For output operation, all the data is latched and remains unchanged until the output latch is rewritten.

Register				В	it			
Name	7	6	5	4	3	2	1	0
PA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PAC	PAC7	PAC6	PAC5	PAC4	PAC3	PAC2	PAC1	PAC0
PAPU	PAPU7	PAPU6	PAPU5	PAPU4	PAPU3	PAPU2	PAPU1	PAPU0
PAWU	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
РВ	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
PBC	PBC7	PBC6	PBC5	PBC4	PBC3	PBC2	PBC1	PBC0
PBPU	PBPU7	PBPU6	PBPU5	PBPU4	PBPU3	PBPU2	PBPU1	PBPU0
PC	_	_	_	_	_	_	PC1	PC0
PCC	_	_	_	_	_	_	PCC1	PCC0
PCPU	_	_	_	_	_	_	PCPU1	PCPU0
LVPUC	_	_	_	_	_	_	_	LVPU

"—": Unimplemented, read as "0"

I/O Logic Function Register List

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs usually requiring the use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when configured as a digital input have the capability of being connected to an internal pull-high resistor. These pull-high resistors are selected using the LVPUC and PxPU registers, and are implemented using weak PMOS transistors. The PxPU register is used to determine whether the pull-high function is enabled or not while the LVPUC register is used to select the pull-high resistor value for low voltage power supply applications.

Note that the pull-high resistor can be controlled by the relevant pull-high control register only when the pin-shared functional pin is selected as a digital input or NMOS output. Otherwise, the pull-high resistors cannot be enabled.

Not that the LVPU bit in the LVPUC register is only available when the corresponding pin pull-high function is enabled. If the pull-high function is disabled, the LVPU bit has no effect on selecting the pull-high resistor value.

Rev. 1.20 50 October 25, 2023

PxPU Register

Bit	7	6	5	4	3	2	1	0
Name	PxPU7	PxPU6	PxPU5	PxPU4	PxPU3	PxPU2	PxPU1	PxPU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

PxPUn: I/O Port x Pin pull-high function control

0: Disable 1: Enable

The PxPUn bit is used to control the pin pull-high function. Here the "x" can be A and B. However, the actual available bits for each I/O Port may be different.

Special attention should be paid to the unbounded pins, PB6, PB7, PC0 and PC1. The relevant PxPUn bit should be fixed at 0 and the corresponding pin should be set as an ouput by clearing the PxCn bit to zero to avoid unwanted power consumption result from floating input conditions.

LVPUC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	LVPU
R/W	_	_	_	_	_	_	_	R/W
POR	_	_	_	_	_	_	_	0

Bit 7~1 Unimplemented, read as "0"

Bit 0 LVPU: Pull-high resistor selection for low voltage power supply

0: All pin pull-high resistors are $60k\Omega$ @ 3V 1: All pin pull-high resistors are $15k\Omega$ @ 3V

Port A Wake-up

The HALT instruction forces the microcontroller into the SLEEP or IDLE Mode which preserves power, a feature that is important for battery and other low-power applications. Various methods exist to wake-up the microcontroller, one of which is to change the logic condition on one of the Port A pins from high to low. This function is especially suitable for applications that can be woken up via external switches. Each pin on Port A can be selected individually to have this wake-up feature using the PAWU register.

Note that the wake-up function can be controlled by the wake-up control registers only when the pin is selected as a general purpose input and the MCU enters the IDLE or SLEEP mode.

• PAWU Register

Bit	7	6	5	4	3	2	1	0
Name	PAWU7	PAWU6	PAWU5	PAWU4	PAWU3	PAWU2	PAWU1	PAWU0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 PAWU7~PAWU0: PA7~PA0 wake-up function control

0: Disable 1: Enable

Rev. 1.20 51 October 25, 2023

I/O Port Control Registers

Each I/O port has its own control register known as PAC~PBC, to control the input/output configuration. With this control register, each CMOS output or input can be reconfigured dynamically under software control. Each pin of the I/O ports is directly mapped to a bit in its associated port control register. For the I/O pin to function as an input, the corresponding bit of the control register must be written as a "1". This will then allow the logic state of the input pin to be directly read by instructions. When the corresponding bit of the control register is written as a "0", the I/O pin will be set as a CMOS output. If the pin is currently set as an output, instructions can still be used to read the output register. However, it should be noted that the program will in fact only read the status of the output data latch and not the actual logic status of the output pin.

HT66F2630

PxC Register

Bit	7	6	5	4	3	2	1	0
Name	PxC7	PxC6	PxC5	PxC4	PxC3	PxC2	PxC1	PxC0
R/W								
POR	1	1	1	1	1	1	1	1

PxCn: I/O Port x Pin type selection

0: Output 1: Input

The PxCn bit is used to control the pin type selection. Here the "x" can be A and B. However, the actual available bits for each I/O Port may be different.

Special attention should be paid to the unbounded pins, PB6, PB7, PC0 and PC1. The relevant PxCn bit should be fixed at 0 to avoid unwanted power consumption result from floating input conditions.

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more than one function. Limited numbers of pins can force serious design constraints on designers but by supplying pins with multi-functions, many of these difficulties can be overcome. For these pins, the desired function of the multi-function I/O pins is selected by a series of registers via the application program control.

Pin-shared Function Selection Registers

The limited number of supplied pins in a package can impose restrictions on the amount of functions a certain device can contain. However by allowing the same pins to share several different functions and providing a means of function selection, a wide range of different functions can be incorporated into even relatively small package sizes. The device includes Port A Output Function Selection register "n", labeled as PASn, and Input Function Selection register, labeled as IFS, which can select the desired functions of the multi-function pin-shared pins.

The most important point to note is to make sure that the desired pin-shared function is properly selected and also deselected. For most pin-shared functions, to select the desired pin-shared function, the pin-shared function should first be correctly selected using the corresponding pin-shared control register. After that the corresponding peripheral functional setting should be configured and then the peripheral function can be enabled. However, a special point must be noted for some digital input pins, such as INTO and PTCK, which share the same pin-shared control configuration with their corresponding general purpose I/O functions when setting the relevant pin-shared control bit fields. To select this pin function, in addition to the necessary pin-shared control and peripheral functional setup aforementioned, they must also be set as an input by setting the corresponding bit in the I/O port control register. To correctly deselect the pin-shared function, the peripheral function should

Rev. 1.20 52 October 25, 2023

first be disabled and then the corresponding pin-shared function control register can be modified to select other pin-shared functions.

Register		Bit								
Name	7	6	5	4	3	2	1	0		
PAS0	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00		
PAS1	_	_	PAS15	PAS14	PAS13	PAS12	_	_		
IFS	_	_	_	_	PTPIS	PTCKS	INT1S	INT0S		

Pin-shared Function Selection Register List

PAS0 Register

Bit	7	6	5	4	3	2	1	0
Name	PAS07	PAS06	PAS05	PAS04	PAS03	PAS02	PAS01	PAS00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 PAS07~PAS06: PA3 Pin-Shared function selection

00: PA3/PTCK/INT0 01: PA3/PTCK/INT0 10: PA3/PTCK/INT0

11: AN3

Bit 5~4 PAS05~PAS04: PA2 Pin-Shared function selection

00: PA2 01: PA2 10: PA2 11: AN2

Bit 3~2 **PAS03~PAS02**: PA1 Pin-Shared function selection

00: PA1 01: PA1 10: AN1 11: VREF

Bit 1~0 PAS01~PAS00: PA0 Pin-Shared function selection

00: PA0 01: PA0 10: PA0 11: AN0

PAS1 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	PAS15	PAS14	PAS13	PAS12	_	_
R/W	_	_	R/W	R/W	R/W	R/W	_	_
POR	_	_	0	0	0	0	_	_

Bit 7~6 Unimplemented, read as "0"

Bit 5~4 PAS15~PAS14: PA6 Pin-Shared function selection

00: PA6 01: PA6 10: PA6 11: PTP

Bit 3~2 PAS13~PAS12: PA5 Pin-Shared function selection

00: PA5/PTPI 01: PA5/PTPI 10: PA5/PTPI 11: PTPB

Bit 1~0 Unimplemented, read as "0"

• IFS Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	PTPIS	PTCKS	INT1S	INT0S
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

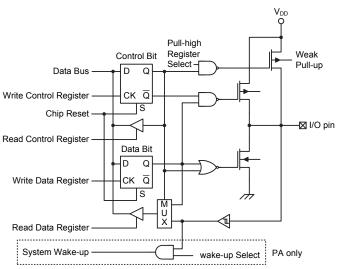
Bit 3 **PTPIS**: PTPI input source pin selection

0: PA4 1: PA5

Bit 2 **PTCKPS**: PTCK input source pin selection

0: PA3 1: PB4

Bit 1 INT1S: INT1 input source pin selection


0: PA4 1: PB3

Bit 1 **INT0S**: INT0 input source pin selection

0: PA3 1: PB2

I/O Pin Structures

The accompanying diagram illustrates the internal structure of the I/O logic function. As the exact logical construction of the I/O pin will differ from this drawing, it is supplied as a guide only to assist with the functional understanding of the I/O logic function. The wide range of pin-shared structures does not permit all types to be shown.

Logic Function Input/Output Structure

Programming Considerations

Within the user program, one of the first things to consider is port initialisation. After a reset, all of the I/O data and port control registers will be set high. This means that all I/O pins will default to an input state, the level of which depends on the other connected circuitry and whether pull-high selections have been chosen. If the port control registers are then programmed to set some pins as outputs, these output pins will have an initial high output value unless the associated port data registers are first programmed. Selecting which pins are inputs and which are outputs can be achieved byte-wide by

Rev. 1.20 54 October 25, 2023

loading the correct values into the appropriate port control register or by programming individual bits in the port control register using the "SET [m].i" and "CLR [m].i" instructions. Note that when using these bit control instructions, a read-modify-write operation takes place. The microcontroller must first read in the data on the entire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up function. When the device is in the SLEEP or IDLE Mode, various methods are available to wake the device up. One of these is a high to low transition of any of the Port A pins. Single or multiple pins on Port A can be set to have this function.

Timer Modules - TM

One of the most fundamental functions in any microcontroller device is the ability to control and measure time. To implement time related functions each device includes a Timer Module, abbreviated to the name TM. The TM is a multi-purpose timing unit and serves to provide operations such as Timer/Counter, Input Capture, Compare Match Output and Single Pulse Output as well as being the functional unit for the generation of PWM signals. The TM has two individual interrupts. The addition of input and output pins for the TM ensures that users are provided with timing units with a wide and flexible range of features.

Introduction

The device contains one Periodic Type TM having a reference name of PTM. The general features to the Periodic TM will be described in this section and the detailed operation will be described in the Periodic type TM section. The main features of the PTM are summarised in the accompanying table.

Function	PTM
Timer/Counter	√
Input Capture	√
Compare Match Output	√
PWM Output	√
Single Pulse Output	√
PWM Alignment	Edge
PWM Adjustment Period & Duty	Duty or Period

TM Function Summary

TM Operation

The Periodic type TM offers a diverse range of functions, from simple timing operations to PWM signal generation. The key to understanding how the PTM operates is to see it in terms of a free running counter whose value is then compared with the value of pre-programmed internal comparators. When the free running counter has the same value as the pre-programmed comparator, known as a compare match situation, a PTM interrupt signal will be generated which can clear the counter and perhaps also change the condition of the PTM output pin. The internal PTM counter is driven by a user selectable clock source, which can be an internal clock or an external pin.

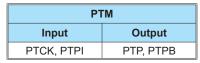
TM Clock Source

The clock source which drives the main counter in the PTM can originate from various sources. The selection of the required clock source is implemented using the PTCK2 \sim PTCK0 bits in the PTM control registers. The clock source can be a ratio of the system clock f_{SYS} or the f_{LIRC_PTM} , $f_{LIRC}/8$ clock source or the external PTCK pin. The PTCK pin clock source is used to allow an external signal to drive the PTM as an external clock source or for event counting.

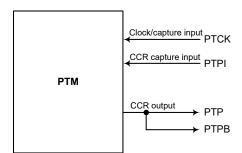
Rev. 1.20 55 October 25, 2023

TM Interrupts

The Periodic type TM has two internal interrupts, one for each of the internal comparator A or comparator P, which generate a PTM interrupt when a compare match condition occurs. When a PTM interrupt is generated it can be used to clear the counter and also to change the state of the PTM output pin.


TM External Pins

The Periodic type TM has two input pins, with the label PTCK and PTPI respectively. The PTM input pin, PTCK, is essentially a clock source for the PTM and is selected using the PTCK2~PTCK0 bits in the PTMC0 register. This external PTM input pin allows an external clock source to drive the internal PTM. The PTCK input pin can be chosen to have either a rising or falling active edge. The PTCK pin is also used as the external trigger input pin in single pulse output mode.

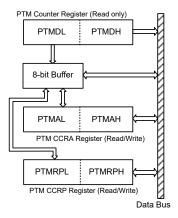

The other PTM input pin, PTPI, is the capture input whose active edge can be a rising edge, a falling edge or both rising and falling edges and the active edge transition type is selected using the PTIO1~PTIO0 bits in the PTMC1 register. There is another capture input, PTCK, for PTM capture input mode, which can be used as the external trigger input source except the PTPI pin.

The PTM has two output pins with the label PTP and PTPB. The PTPB pin outputs the inverted signal of the PTP. When the PTM is in the Compare Match Output Mode, these pins can be controlled by the PTM to switch to a high or low level or to toggle when a compare match situation occurs. The external PTP and PTPB output pins are also the pins where the PTM generates the PWM output waveform.

As the PTM input and output pins are pin-shared with other functions, the PTM input and output functions must first be selected using the relevant pin-shared function selection bits described in the Pin-shared Function section as well as the functional control bit in the Periodic Type TM section.

TM External Pins

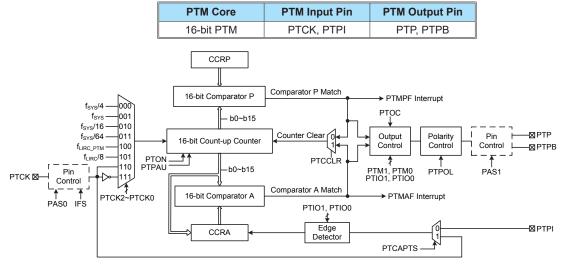
PTM Function Pin Block Diagram


Rev. 1.20 56 October 25, 2023

Programming Considerations

The TM Counter Registers and the Capture/Compare CCRA and CCRP registers, all have a low and high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to note is that data transfer to and from the 8-bit buffer and its related low byte only takes place when a write or read operation to its corresponding high byte is executed.

As the CCRA and CCRP registers are implemented in the way shown in the following diagram and accessing these register pairs is carried out in a specific way as described above, it is recommended to use the "MOV" instruction to access the CCRA and CCRP low byte registers, named PTMAL and PTMRPL, using the following access procedures. Accessing the CCRA or CCRP low byte registers without following these access procedures will result in unpredictable values.


The following steps show the read and write procedures:

- Writing Data to CCRA or CCRP
 - Step 1. Write data to Low Byte PTMAL or PTMRPL
 - Note that here data is only written to the 8-bit buffer.
 - Step 2. Write data to High Byte PTMAH or PTMRPH
 - Here data is written directly to the high byte registers and simultaneously data is latched from the 8-bit buffer to the Low Byte registers.
- · Reading Data from the Counter Registers, CCRA or CCRP
 - Step 1. Read data from the High Byte PTMDH, PTMAH or PTMRPH
 - Here data is read directly from the High Byte registers and simultaneously data is latched from the Low Byte register into the 8-bit buffer.
 - Step 2. Read data from the Low Byte PTMDL, PTMAL or PTMRPL
 - This step reads data from the 8-bit buffer.

Periodic Type TM - PTM

The Periodic Type TM contains five operating modes, which are Compare Match Output, Timer/ Event Counter, Capture Input, Single Pulse Output and PWM Output modes. The Periodic TM can be controlled with two external input pins and can drive two external output pins.

Note: PTPB is the inverted signal of PTP.

16-bit Periodic Type TM Block Diagram

Periodic TM Operation

The Periodic Type TM core is a 16-bit count-up counter which is driven by a user selectable internal or external clock source. There are also two internal comparators with the names, Comparator A and Comparator P. These comparators will compare the value in the counter with CCRP and CCRA registers. The CCRP and CCRA comparators are 16-bit wide whose value is respectively compared with all counter bits.

The only way of changing the value of the 16-bit counter using the application program, is to clear the counter by changing the PTON bit from low to high. The counter will also be cleared automatically by a counter overflow or a compare match with one of its associated comparators. When these conditions occur, a PTM interrupt signal will also usually be generated. The Periodic Type TM can operate in a number of different operational modes, can be driven by different clock sources including an input pin and can also control the output pins. All operating setup conditions are selected using relevant internal registers.

Periodic Type TM Register Description

Overall operation of the Periodic Type TM is controlled using a series of registers. A read only register pair exists to store the internal counter 16-bit value, while two read/write register pairs exist to store the internal 16-bit CCRA value and CCRP value. The remaining two registers are control registers which set the different operating and control modes.

Register		Bit							
Name	7	6	5	4	3	2	1	0	
PTMC0	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_	
PTMC1	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR	
PTMDL	D7	D6	D5	D4	D3	D2	D1	D0	

Rev. 1.20 58 October 25, 2023

Register	Bit							
Name	7	6	5	4	3	2	1	0
PTMDH	D15	D14	D13	D12	D11	D10	D9	D8
PTMAL	D7	D6	D5	D4	D3	D2	D1	D0
PTMAH	D15	D14	D13	D12	D11	D10	D9	D8
PTMRPL	PTRP7	PTRP6	PTRP5	PTRP4	PTRP3	PTRP2	PTRP1	PTRP0
PTMRPH	PTRP15	PTRP14	PTRP13	PTRP12	PTRP11	PTRP10	PTRP9	PTRP8

16-bit Periodic TM Register List

PTMC0 Register

Bit	7	6	5	4	3	2	1	0
Name	PTPAU	PTCK2	PTCK1	PTCK0	PTON	_	_	_
R/W	R/W	R/W	R/W	R/W	R/W	_	_	_
POR	0	0	0	0	0	_	_	_

Bit 7 **PTPAU**: PTM counter pause control

0: Run 1: Pause

The counter can be paused by setting this bit high. Clearing the bit to zero restores normal counter operation. When in a Pause condition the PTM will remain powered up and continue to consume power. The counter will retain its residual value when this bit changes from low to high and resume counting from this value when the bit changes to a low value again.

Bit 6~4 PTCK2~PTCK0: PTM counter clock selection

 $\begin{array}{c} 000: \, f_{SYS}/4 \\ 001: \, f_{SYS} \\ 010: \, f_{SYS}/16 \\ 011: \, f_{SYS}/64 \\ 100: \, f_{LIRC_PTM} \\ 101: \, f_{LIRC}/8 \end{array}$

110: PTCK rising edge clock 111: PTCK falling edge clock

These three bits are used to select the clock source for the PTM. The external pin clock source can be chosen to be active on the rising or falling edge. The clock source f_{SYS} is the system clock, while f_{LIRC_PTM} or $f_{LIRC}/8$ is provided by the LIRC oscillator, the details of which can be found in the oscillator section.

Bit 3 **PTON**: PTM counter on/off control

0: Off 1: On

This bit controls the overall on/off function of the PTM. Setting the bit high enables the counter to run, clearing the bit disables the PTM. Clearing this bit to zero will stop the counter from counting and turn off the PTM which will reduce its power consumption. When the bit changes state from low to high the internal counter value will be reset to zero, however when the bit changes from high to low, the internal counter will retain its residual value until the bit returns high again.

If the PTM is in the Compare Match Output Mode, PWM output Mode or Single Pulse Output Mode then the PTM output pin will be reset to its initial condition, as specified by the PTOC bit, when the PTON bit changes from low to high.

Bit 2~0 Unimplemented, read as "0"

• PTMC1 Register

Bit	7	6	5	4	3	2	1	0
Name	PTM1	PTM0	PTIO1	PTIO0	PTOC	PTPOL	PTCAPTS	PTCCLR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~6 **PTM1~PTM0**: PTM operating mode selection

00: Compare Match Output Mode

01: Capture Input Mode

10: PWM Output Mode or Single Pulse Output Mode

11: Timer/Counter Mode

These bits are used to set the required operating mode for the PTM. To ensure reliable operation the PTM should be switched off before any changes are made to the PTM1 and PTM0 bits. In the Timer/Counter Mode, the PTM output pin state is undefined.

Bit 5~4 PTIO1~PTIO0: PTM external pin (PTP or PTPI/PTCK) function selection

Compare Match Output Mode

00: No change

01: Output low

10: Output high

11: Toggle output

PWM Output Mode/Single Pulse Output Mode

00: PWM Output inactive state

01: PWM Output active state

10: PWM output

11: Single pulse output

Capture Input Mode

00: Input capture at rising edge of PTPI or PTCK

01: Input capture at falling edge of PTPI or PTCK

10: Input capture at falling/rising edge of PTPI or PTCK

11: Input capture disabled

Timer/Counter Mode

Unused

These two bits are used to determine how the PTM output pin changes state when a certain condition is reached. The function that these bits select depends upon in which mode the PTM is running.

In the Compare Match Output Mode, the PTIO1 and PTIO0 bits determine how the PTM output pin changes state when a compare match occurs from the Comparator A. The PTM output pin can be set to switch high, switch low or to toggle its present state when a compare match occurs from the Comparator A. When the bits are both zero, then no change will take place on the output. The initial value of the PTM output pin should be set using the PTOC bit in the PTMC1 register. Note that the output level requested by the PTIO1 and PTIO0 bits must be different from the initial value setup using the PTOC bit otherwise no change will occur on the PTM output pin when a compare match occurs. After the PTM output pin changes state, it can be reset to its initial level by changing the level of the PTON bit from low to high.

In the PWM Output Mode, the PTIO1 and PTIO0 bits determine how the PTM output pin changes state when a certain compare match condition occurs. The PWM output function is modified by changing these two bits. It is necessary to only change the values of the PTIO1 and PTIO0 bits only after the TM has been switched off. Unpredictable PWM outputs will occur if the PTIO1 and PTIO0 bits are changed when the PTM is running.

Rev. 1.20 60 October 25, 2023

Bit 3 **PTOC**: PTM PTP output control

Compare Match Output Mode

0: Initial low1: Initial high

PWM Output Mode/Single Pulse Output Mode

0: Active low 1: Active high

This is the output control bit for the PTM output pin. Its operation depends upon whether PTM is being used in the Compare Match Output Mode or in the PWM Output Mode/Single Pulse Output Mode. It has no effect if the PTM is in the Timer/Counter Mode. In the Compare Match Output Mode it determines the logic level of the PTM output pin before a compare match occurs. In the PWM Output Mode it determines if the PWM signal is active high or active low. In the Single Pulse Output Mode it determines the logic level of the PTM output pin when the PTON bit changes from low to high.

Bit 2 **PTPOL**: PTM PTP output polarity control

0: Non-invert 1: Invert

This bit controls the polarity of the PTP output pin. When the bit is set high the PTM output pin will be inverted and not inverted when the bit is zero. It has no effect if the PTM is in the Timer/Counter Mode.

Bit 1 **PTCAPTS**: PTM capture trigger source selection

0: From PTPI pin
1: From PTCK pin

Bit 0 **PTCCLR**: PTM counter clear condition selection

0: PTM Comparator P match1: PTM Comparator A match

This bit is used to select the method which clears the counter. Remember that the Periodic TM contains two comparators, Comparator A and Comparator P, either of which can be selected to clear the internal counter. With the PTCCLR bit set high, the counter will be cleared when a compare match occurs from the Comparator A. When the bit is low, the counter will be cleared when a compare match occurs from the Comparator P or with a counter overflow. A counter overflow clearing method can only be implemented if the CCRP bits are all cleared to zero. The PTCCLR bit is not used in the PWM Output Mode, Single Pulse Output Mode or Capture Input Mode.

PTMDL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D7~D0**: PTM Counter Low Byte Register bit $7 \sim$ bit 0

PTM 16-bit Counter bit $7 \sim bit 0$

PTMDH Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R	R	R	R	R	R	R	R
POR	0	0	0	0	0	0	0	0

Bit $7 \sim 0$ **D15 \sim D8**: PTM Counter High Byte Register bit $7 \sim$ bit 0

PTM 16-bit Counter bit 15 ~ bit 8

• PTMAL Register

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim0$ **D7\simD0**: PTM CCRA Low Byte Register bit $7\sim$ bit 0 PTM 16-bit CCRA bit $7\sim$ bit 0

• PTMAH Register

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

• PTMRPL Register

Bit	7	6	5	4	3	2	1	0
Name	PTRP7	PTRP6	PTRP5	PTRP4	PTRP3	PTRP2	PTRP1	PTRP0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit $7\sim0$ **PTRP7~PTRP0**: PTM CCRP Low Byte Register bit $7\sim$ bit 0 PTM 16-bit CCRP bit $7\sim$ bit 0

• PTMRPH Register

Bit	7	6	5	4	3	2	1	0
Name	PTRP15	PTRP14	PTRP13	PTRP12	PTRP11	PTRP10	PTRP9	PTRP8
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

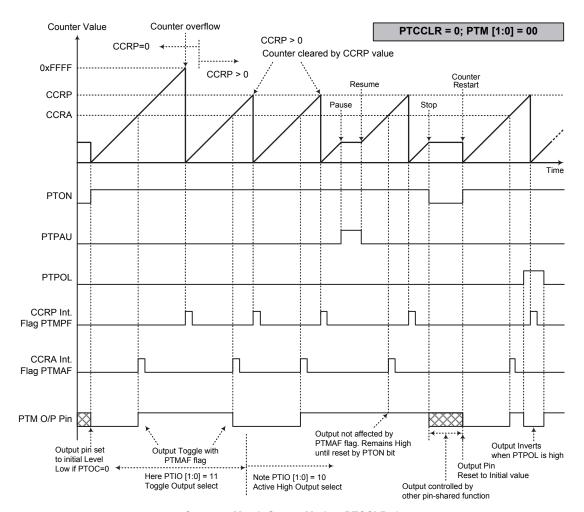
Bit 7~0 **PTRP15~PTRP8**: PTM CCRP High Byte Register bit 7 ~ bit 0 PTM 16-bit CCRP bit 15 ~ bit 8

Rev. 1.20 62 October 25, 2023

Periodic Type TM Operating Modes

The Periodic Type TM can operate in one of five operating modes, Compare Match Output Mode, PWM Output Mode, Single Pulse Output Mode, Capture Input Mode or Timer/Counter Mode. The operating mode is selected using the PTM1 and PTM0 bits in the PTMC1 register.

Compare Match Output Mode

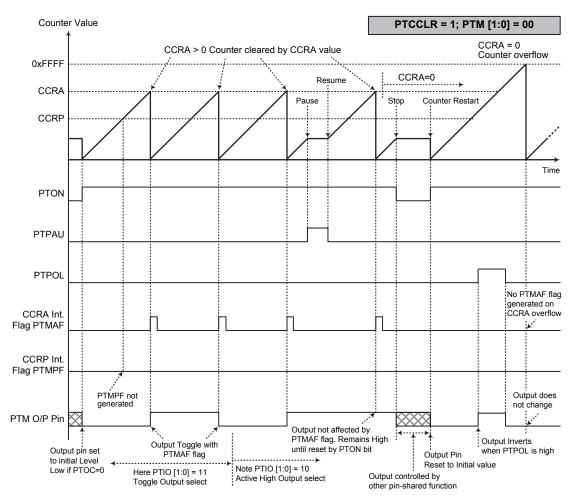

To select this mode, bits PTM1 and PTM0 in the PTMC1 register, should be set to "00" respectively. In this mode once the counter is enabled and running it can be cleared by three methods. These are a counter overflow, a compare match from Comparator A and a compare match from Comparator P. When the PTCCLR bit is low, there are two ways in which the counter can be cleared. One is when a compare match from Comparator P, the other is when the CCRP bits are all zero which allows the counter to overflow. Here both PTMAF and PTMPF interrupt request flags for Comparator A and Comparator P respectively, will both be generated.

If the PTCCLR bit in the PTMC1 register is high then the counter will be cleared when a compare match occurs from Comparator A. However, here only the PTMAF interrupt request flag will be generated even if the value of the CCRP bits is less than that of the CCRA registers. Therefore when PTCCLR is high no PTMPF interrupt request flag will be generated. In the Compare Match Output Mode, the CCRA can not be cleared to zero.

If the CCRA bits are all zero, the counter will overflow when its reaches its maximum 16-bit, FFFF Hex, value, however here the PTMAF interrupt request flag will not be generated.

As the name of the mode suggests, after a comparison is made, the PTM output pin, will change state. The PTM output pin condition however only changes state when a PTMAF interrupt request flag is generated after a compare match occurs from Comparator A. The PTMPF interrupt request flag, generated from a compare match occurs from Comparator P, will have no effect on the PTM output pin. The way in which the PTM output pin changes state are determined by the condition of the PTIO1 and PTIO0 bits in the PTMC1 register. The PTM output pin can be selected using the PTIO1 and PTIO0 bits to go high, to go low or to toggle from its present condition when a compare match occurs from Comparator A. The initial condition of the PTM output pin, which is configured after the PTON bit changes from low to high, is configured using the PTOC bit. Note that if the PTIO1 and PTIO0 bits are zero then no pin change will take place.

Rev. 1.20 63 October 25, 2023


Compare Match Output Mode - PTCCLR=0

Note: 1. With PTCCLR=0 a Comparator P match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge

Rev. 1.20 64 October 25, 2023

Compare Match Output Mode - PTCCLR=1

Note: 1. With PTCCLR=1 a Comparator A match will clear the counter

- 2. The PTM output pin is controlled only by the PTMAF flag
- 3. The output pin is reset to its initial state by a PTON bit rising edge
- 4. A PTMPF flag is not generated when PTCCLR=1

Timer/Counter Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to "11" respectively. The Timer/Counter Mode operates in an identical way to the Compare Match Output Mode generating the same interrupt flags. The exception is that in the Timer/Counter Mode the PTM output pin is not used. Therefore the above description and Timing Diagrams for the Compare Match Output Mode can be used to understand its function. As the PTM output pins are not used in this mode, the pins can be used as normal I/O pins or other pin-shared functions.

PWM Output Mode

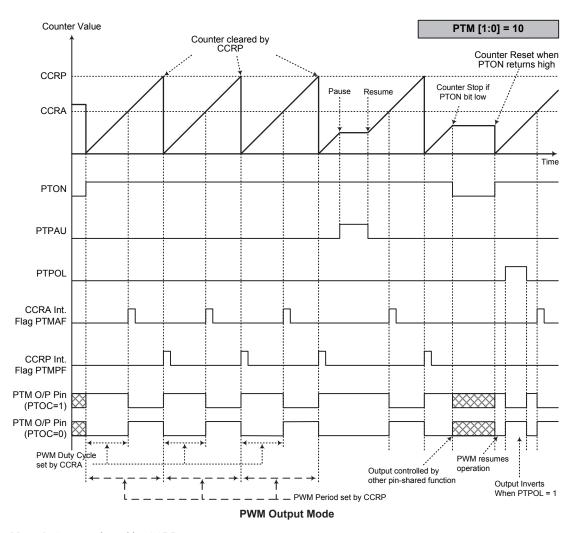
To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to "10" respectively. The PWM function within the PTM is useful for applications which require functions such as motor control, heating control, illumination control etc. By providing a signal of fixed frequency but of varying duty cycle on the PTM output pin, a square wave AC waveform can be generated with varying equivalent DC RMS values.

As both the period and duty cycle of the PWM waveform can be controlled, the choice of generated waveform is extremely flexible. In the PWM Output Mode, the PTCCLR bit has no effect on the PWM operation. Both of the CCRA and CCRP registers are used to generate the PWM waveform, one register is used to clear the internal counter and thus control the PWM waveform frequency, while the other one is used to control the duty cycle. The PWM waveform frequency and duty cycle can therefore be controlled by the values in the CCRA and CCRP registers.

An interrupt flag, one for each of the CCRA and CCRP, will be generated when a compare match occurs from either Comparator A or Comparator P. The PTOC bit in the PTMC1 register is used to select the required polarity of the PWM waveform while the two PTIO1 and PTIO0 bits are used to enable the PWM output or to force the PTM output pin to a fixed high or low level. The PTPOL bit is used to reverse the polarity of the PWM output waveform.

• 16-bit PTM, PWM Output Mode, Edge-aligned Mode

CCRP	1~65535	0			
Period	1~65535	65535			
Duty	CCRA				

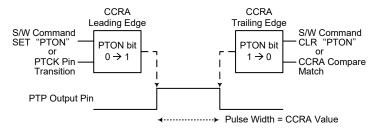

If f_{SYS}=8MHz, PTM clock source select f_{SYS}/4, CCRP=512 and CCRA=128,

The PTM PWM output frequency= $(f_{SYS}/4)/512=f_{SYS}/2048\approx 4$ kHz, duty=128/512=25%.

If the Duty value defined by the CCRA register is equal to or greater than the Period value, then the PWM output duty is 100%.

Rev. 1.20 66 October 25, 2023

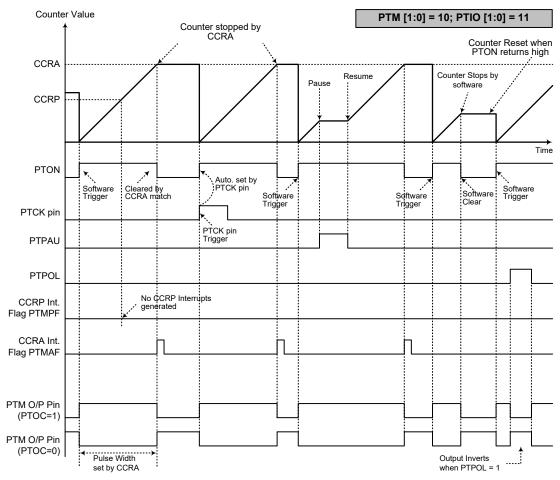
Note: 1. Counter cleared by CCRP


- 2. A counter clear sets the PWM Period
- 3. The internal PWM function continues running even when PTIO[1:0]=00 or 01
- 4. The PTCCLR bit has no influence on PWM operation

Single Pulse Output Mode

To select this mode, bits PTM1 and PTM0 in the PTMC1 register should be set to "10" respectively and also the PTIO1 and PTIO0 bits should be set to "11" respectively. The Single Pulse Output Mode, as the name suggests, will generate a single shot pulse on the PTM output pin.

The trigger for the pulse output leading edge is a low to high transition of the PTON bit, which can be implemented using the application program. However in the Single Pulse Output Mode, the PTON bit can also be made to automatically change from low to high using the external PTCK pin, which will in turn initiate the Single Pulse output. When the PTON bit transitions to a high level, the counter will start running and the pulse leading edge will be generated. The PTON bit should remain high when the pulse is in its active state. The generated pulse trailing edge will be generated when the PTON bit is cleared to zero, which can be implemented using the application program or when a compare match occurs from Comparator A.


However a compare match from Comparator A will also automatically clear the PTON bit and thus generate the Single Pulse output trailing edge. In this way the CCRA value can be used to control the pulse width. A compare match from Comparator A will also generate a PTM interrupt. The counter can only be reset back to zero when the PTON bit changes from low to high when the counter restarts. In the Single Pulse Output Mode CCRP is not used. The PTCCLR bit is not used in this Mode.

Single Pulse Generation

Rev. 1.20 68 October 25, 2023

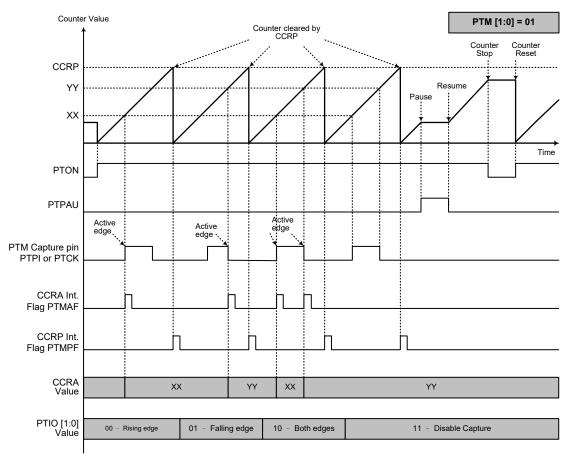
Single Pulse Output Mode

Note: 1. Counter stopped by CCRA

- 2. CCRP is not used
- 3. The pulse is triggered by the PTCK pin or by setting the PTON bit high
- 4. A PTCK pin active edge will automatically set the PTON bit high
- 5. In the Single Pulse Output Mode, PTIO[1:0] must be set to "11" and cannot be changed

Rev. 1.20 69 October 25, 2023

Capture Input Mode


To select this mode bits PTM1 and PTM0 in the PTMC1 register should be set to "01" respectively. This mode enables external signals to capture and store the present value of the internal counter and can therefore be used for applications such as pulse width measurements. The external signal is supplied on the PTPI or PTCK pin which is selected using the PTCAPTS bit in the PTMC1 register. The input pin active edge can be either a rising edge, a falling edge or both rising and falling edges; the active edge transition type is selected using the PTIO1 and PTIO0 bits in the PTMC1 register. The counter is started when the PTON bit changes from low to high which is initiated using the application program.

When the required edge transition appears on the PTPI or PTCK pin the present value in the counter will be latched into the CCRA registers and a PTM interrupt generated. Irrespective of what events occur on the PTPI or PTCK pin, the counter will continue to free run until the PTON bit changes from high to low. When a CCRP compare match occurs the counter will reset back to zero; in this way the CCRP value can be used to control the maximum counter value. When a CCRP compare match occurs from Comparator P, a PTM interrupt will also be generated. Counting the number of overflow interrupt signals from the CCRP can be a useful method in measuring long pulse widths. The PTIO1 and PTIO0 bits can select the active trigger edge on the PTPI or PTCK pin to be a rising edge, falling edge or both edge types. If the PTIO1 and PTIO0 bits are both set high, then no capture operation will take place irrespective of what happens on the PTPI or PTCK pin, however it must be noted that the counter will continue to run.

As the PTPI or PTCK pin is pin shared with other functions, care must be taken if the PTM is in the Capture Input Mode. This is because if the pin is set as an output, then any transitions on this pin may cause an input capture operation to be executed. The PTCCLR, PTOC and PTPOL bits are not used in this Mode.

Rev. 1.20 70 October 25, 2023

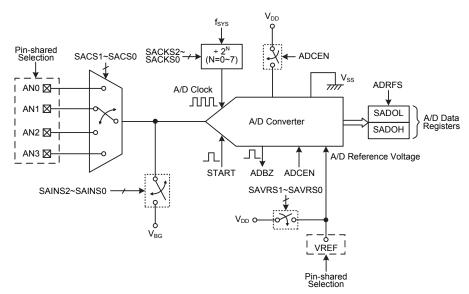
Capture Input Mode

Note: 1. PTM[1:0]=01 and active edge set by the PTIO[1:0] bits

- 2. A PTM Capture input pin active edge transfers the counter value to CCRA
- 3. PTCCLR bit not used
- 4. No output function PTOC and PTPOL bits are not used
- 5. CCRP determines the counter value and the counter has a maximum count value when CCRP is equal to zero

Rev. 1.20 71 October 25, 2023

Analog to Digital Converter


The need to interface to real world analog signals is a common requirement for many electronic systems. However, to properly process these signals by a microcontroller, they must first be converted into digital signals by A/D converters. By integrating the A/D conversion electronic circuitry into the microcontroller, the need for external components is reduced significantly with the corresponding follow-on benefits of lower costs and reduced component space requirements.

A/D Converter Overview

This device contains a multi-channel analog to digital converter which can directly interface to external analog signals, such as that from sensors or other control signals and convert these signals directly into a 12-bit digital value. The external or internal analog signal to be converted is determined by the SAINS2~SAINS0 bits together with the SACS1~SACS0 bits. When the external analog signal is to be converted, the corresponding pin-shared control bits should first be properly configured and then desired external channel input should be selected using the SAINS2~SAINS0 and SACS1~SACS0 bits. Note that when the internal analog signal is to be converted, some pin-shared control bits should also be properly configured except the SAINS and SACS bit fields to avoid external channel input. More detailed information about the A/D input signal is described in the "A/D Converter Control Registers" and "A/D Converter Input Signals" sections respectively.

External Input Channels	Internal Signal	A/D Channel Select Bits
4: AN0~AN3	1: V _{BG}	SAINS2~SAINS0,
4. AINU~AINS	I. VBG	SACS1~SACS0

The accompanying block diagram shows the overall internal structure of the A/D converter, together with its associated registers.

A/D Converter Structure

Rev. 1.20 72 October 25, 2023

A/D Converter Register Description

Overall operation of the A/D converter is controlled using four registers. A read only register pair exists to store the A/D converter data 12-bit single value. The remaining two registers are control registers which configures the operating and control function of the A/D converter.

Register				В	it			
Name	7	6	5	4	3	2	1	0
SADOL (ADRFS=0)	D3	D2	D1	D0	_	_	_	_
SADOL (ADRFS=1)	D7	D6	D5	D4	D3	D2	D1	D0
SADOH (ADRFS=0)	D11	D10	D9	D8	D7	D6	D5	D4
SADOH (ADRFS=1)	_	_	_	_	D11	D10	D9	D8
SADC0	START	ADBZ	ADCEN	ADRFS	_	_	SACS1	SACS0
SADC1	SAINS2	SAINS1	SAINS0	SAVRS1	SAVRS0	SACKS2	SACKS1	SACKS0

A/D Converter Register List

A/D Converter Data Registers - SADOL, SADOH

As the internal A/D converter provides a 12-bit digital conversion value, it requires two data registers to store the converted value. These are a high byte register, known as SADOH, and a low byte register, known as SADOL. After the conversion process takes place, these registers can be directly read by the microcontroller to obtain the digitised conversion value. As only 12 bits of the 16-bit register space is utilised, the format in which the data is stored is controlled by the ADRFS bit in the SADC0 register, as shown in the accompanying table. Any unused bits will be read as zero. Note that A/D data registers contents will be unchanged if the A/D converter is disabled.

ADRFS	SADOH							SADOL								
ADRES	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	0	0	0	0
1	0	0	0	0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

A/D Converter Data Registers

A/D Converter Control Registers - SADC0, SADC1

To control the function and operation of the A/D converter, two control registers known as SADC0 and SADC1 are provided. These 8-bit registers define functions such as the selection of which analog channel is connected to the internal A/D converter, the digitised data format, the A/D clock source as well as controlling the start function and monitoring the A/D converter busy status. As the device contains only one actual analog to digital converter hardware circuit, each of the external or internal analog signal inputs must be routed to the converter. The SAINS2~SAINS0 bits in the SADC1 register are used to determine that the analog signal to be converted comes from the internal analog signal or external analog channel input. The SACS1~SACS0 bits in the SADC0 register are used to determine which external channel input is selected to be converted.

The relevant pin-shared function selection bits determine which pins on I/O Ports are used as analog inputs for the A/D converter input and which pins are not to be used as the A/D converter input. When the pin is selected to be an A/D input, its original function whether it is an I/O or other pin-shared function will be removed. In addition, any internal pull-high resistor connected to the pin will be automatically removed if the pin is selected to be an A/D converter input.

Rev. 1.20 73 October 25, 2023

SADC0 Register

Bit	7	6	5	4	3	2	1	0
Name	START	ADBZ	ADCEN	ADRFS	_	_	SACS1	SACS0
R/W	R/W	R	R/W	R/W	_	_	R/W	R/W
POR	0	0	0	0	_	_	0	0

Bit 7 START: Start the A/D conversion

 $0 \rightarrow 1 \rightarrow 0$: Start

This bit is used to initiate an A/D conversion process. The bit is normally low but if set high and then cleared low again, the A/D converter will initiate a conversion process.

Bit 6 ADBZ: A/D converter busy flag

0: No A/D conversion is in progress

1: A/D conversion is in progress

This read only flag is used to indicate whether the A/D conversion is in progress or not. When the START bit is set from low to high and then to low again, the ADBZ flag will be set to 1 to indicate that the A/D conversion is initiated. The ADBZ flag will be cleared to 0 after the A/D conversion is complete.

Bit 5 ADCEN: A/D converter function enable control

0: Disable 1: Enable

This bit controls the A/D internal function. This bit should be set to one to enable the A/D converter. If the bit is cleared to zero, then the A/D converter will be switched off reducing the device power consumption. When the A/D converter function is disabled, the contents of the A/D data register pair known as SADOH and SADOL will be unchanged.

Bit 4 ADRFS: A/D converter data format selection

0: A/D converter data format \rightarrow SADOH = D[11:4]; SADOL = D[3:0]

1: A/D converter data format \rightarrow SADOH = D[11:8]; SADOL = D[7:0]

This bit controls the format of the 12-bit converted A/D value in the two A/D data registers. Details are provided in the A/D data register section.

Bit 3~2 Unimplemented, read as "0"

Bit 1~0 SACS1~SACS0: A/D converter external analog channel input selection

00: AN0

01: AN1

10: AN2

11: AN3

SADC1 Register

Bit	7	6	5	4	3	2	1	0
Name	SAINS2	SAINS1	SAINS0	SAVRS1	SAVRS0	SACKS2	SACKS1	SACKS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~5 SAINS0: A/D converter input signal selection

000: External input - External analog channel input, ANn

001: Internal input – Internal Bandgap reference voltage, V_{BG}

010~100: Undefined, connected to ground

101~111: External input – External analog channel input, ANn

Care must be taken if the SAINS2~SAINS0 bits are set to "001" to select the internal analog signal to be coverted. When the internal bandgap reference voltage is selected to be converted, the external input pin must never be selected as the A/D input signal by properly configuring the corresponding pin-shared function control bits. Otherwise, the external channel input will be connected together with the internal analog signal, which will result in unpredictable situations such as an irreversible damage.

Bit 4~3 SAVRS1~SAVRS0: A/D converter reference voltage selection

00: External VREF pin

01: Internal A/D converter power supply, V_{DD}

1x: External VREF pin

These bits are used to select the A/D converter reference voltage. Care must be taken if the SAVRS1~SAVRS0 bits are set to "01" to select the A/D converter power supply as the reference voltage source. In this condition, the VREF pin can not be configured as the reference voltage input by properly configuring the corresponding pin-shared function control bits. Otherwise, the external input voltage on the VREF pin will be connected together with the A/D power supply voltage.

Bit 2~0 SACKS2~SACKS0: A/D conversion clock source selection

000: f_{SYS} 001: f_{SYS}/2 010: f_{SYS}/4 011: f_{SYS}/8 100: f_{SYS}/16 101: f_{SYS}/32 110: f_{SYS}/64 111: f_{SYS}/128

These three bits are used to select the clock source for the A/D converter.

A/D Converter Reference Voltage

The reference voltage supply to the A/D converter can be supplied from the internal A/D power supply voltage, V_{DD}, or from an external reference source supplied on pin VREF. The desired selection is made using the SAVRS1 and SAVRS0 bits. When the SAVRS bit field is set to "01", the A/D converter reference voltage will come from the power supply voltage. Otherwise, if the SAVRS bit field is set to other value except "01", the A/D converter reference voltage will come from the VREF pin. As the VREF pin is pin-shared with other functions, when the VREF pin is selected as the reference voltage supply pin, the VREF pin-shared function control bits should be properly configured to disable other pin functions. However, if the A/D power supply voltage is selected as the reference voltage, the VREF pin must not be configured as the reference voltage input function to avoid the internal connection between the VREF pin and the power supply. The analog input values must not be allowed to exceed the selected reference voltage.

SAVRS[1:0]	Reference	Description
00, 10, 11	VREF pin	External A/D converter reference pin VREF
01	V_{DD}	Internal A/D converter power supply voltage

A/D Converter Reference Voltage Selection

A/D Converter Input Signals

All the external A/D analog channel input pins are pin-shared with the I/O pins as well as other functions. The corresponding control bits for each A/D external input pin in the PAS0 register determine whether the input pins are set as A/D converter analog inputs or whether they have other functions. If the pin is set to be as an A/D analog channel input, the original pin functions will be disabled. In this way, pins can be changed under program control to change their function between A/D inputs and other functions. All pull high resistors, which are set through register programming, will be automatically disconnected if the pins are set as A/D inputs. Note that it is not necessary to first set the A/D pin as an input in the port control register to enable the A/D input as when the pin-shared function control bits enable an A/D input, the status of the port control register will be overridden.

Rev. 1.20 75 October 25, 2023

If the SAINS2~SAINS0 bits are set to "000" or "100~111", the external analog channel input is selected to be converted and the SACS1~SACS0 bits can determine which actual external channel is selected to be converted. If the SAINS2~SAINS0 bits are set to "001", the V_{BG} voltage is selected to be converted. Note that if the internal analog signal is selected to be converted, the external input channel determined by the SACS1~SACS0 bits must be switched to other pin-shared functions by properly configuring the relevant pin-shared function control bits.

SAINS[2:0]	SACS[1:0]	Input Signals	Description
000, 101~111	00~11	AN0~AN3	External channel analog input ANn
001	_	V _{BG}	Internal bandgap reference voltage
010~100	_	GND	Connected to ground

A/D Converter Input Signal Selection

A/D Converter Operation

The START bit in the SADC0 register is used to start the AD conversion. When the microcontroller sets this bit from low to high and then low again, an analog to digital conversion cycle will be initiated.

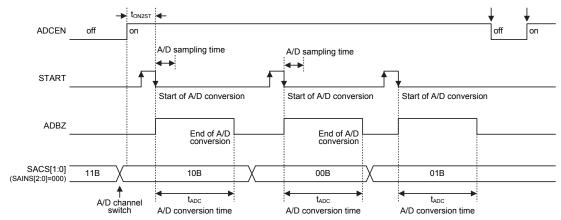
The ADBZ bit in the SADC0 register is used to indicate whether the analog to digital conversion process is in progress or not. This bit will be automatically set to 1 by the microcontroller after an A/D conversion is successfully initiated. When the A/D conversion is complete, the ADBZ will be cleared to 0. In addition, the corresponding A/D interrupt request flag will be set in the interrupt control register, and if the associated interrupts are enabled, an appropriate internal interrupt signal will be generated. This A/D internal interrupt signal will direct the program flow to the associated A/D internal interrupt address for processing. If the A/D internal interrupt is disabled, the microcontroller can poll the ADBZ bit in the SADC0 register to check whether it has been cleared as an alternative method of detecting the end of an A/D conversion cycle.

The clock source for the A/D converter, which originates from the system clock f_{SYS} , can be chosen to be either f_{SYS} or a subdivided version of f_{SYS} . The division ratio value is determined by the SACKS2~SACKS0 bits in the SADC1 register. Although the A/D clock source is determined by the system clock f_{SYS} and by bits SACKS2~SACKS0, there are some limitations on the A/D clock source speed that can be selected. As the recommended range of permissible A/D clock period, t_{ADCK} , is from 0.5 μ s to 10 μ s, care must be taken for system clock frequencies. For example, if the system clock operates at a frequency of 8MHz, the SACKS2~SACKS0 bits should not be set to 000, 001 or 111. Doing so will give A/D clock periods that are less than the minimum A/D clock period or larger than the maximum A/D clock period, which may result in inaccurate A/D conversion values. Refer to the following table for examples, where values marked with an asterisk * show where special care must be taken.

				A/D Clock P	eriod (t _{ADCK})			
f _{sys}	SACKS[2:0] = 000 (f _{SYS})	SACKS[2:0] = 001 (f _{SYS} /2)	SACKS[2:0] = 010 (f _{SYS} /4)	SACKS[2:0] = 011 (fsys/8)	SACKS[2:0] = 100 (f _{sys} /16)	SACKS[2:0] = 101 (f _{SYS} /32)	SACKS[2:0] = 110 (f _{sys} /64)	SACKS[2:0] = 111 (fsys/128)
1MHz	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *	128µs *
2MHz	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *	64µs *
4MHz	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *	32µs *
8MHz	125ns *	250ns *	500ns	1µs	2µs	4µs	8µs	16µs *

A/D Clock Period Examples

Rev. 1.20 76 October 25, 2023


Controlling the power on/off function of the A/D converter circuitry is implemented using the ADCEN bit in the SADC0 register. This bit must be set high to power on the A/D converter. When the ADCEN bit is set high to power on the A/D converter internal circuitry a certain delay, as indicated in the timing diagram, must be allowed before an A/D conversion is initiated. Even if no pins are selected for use as A/D inputs, if the ADCEN bit is high, then some power will still be consumed. In power conscious applications it is therefore recommended that the ADCEN is set low to reduce power consumption when the A/D converter function is not being used.

Conversion Rate and Timing Diagram

A complete A/D conversion contains two parts, data sampling and data conversion. The data sampling which is defined as t_{ADS} takes 4 A/D clock periods and the data conversion takes 12 A/D clock cycles. Therefore a total of 16 A/D clock periods for an external input A/D conversion which is defined as t_{ADC} are necessary.

Maximum single A/D conversion rate = $1/(A/D \text{ clock period} \times 16)$

The accompanying diagram shows graphically the various stages involved in an analog to digital conversion process and its associated timing. After an A/D conversion process has been initiated by the application program, the microcontroller internal hardware will begin to carry out the conversion, during which time the program can continue with other functions. The time taken for the A/D conversion is 16 taddek where taddek is equal to the A/D clock period.

A/D Conversion Timing - External Channel Input

Summary of A/D Conversion Steps

The following summarises the individual steps that should be executed in order to implement an A/D conversion process.

- Step 1
 Select the required A/D conversion clock by correctly programming bits SACKS2~SACKS0 in the SADC1 register.
- Step 2
 Enable the A/D converter by setting the ADCEN bit in the SADC0 register to "1".
- Step 3
 Select which signal is to be connected to the internal A/D converter by correctly configuring the SAINS and SACS bit fields.

 Select the external channel input to be converted, go to Step 4.

Rev. 1.20 77 October 25, 2023

Select the internal analog signal to be converted, go to Step 5.

• Step 4

If the A/D input signal comes from the external channel input selected by configuring the SAINS bit field, the corresponding pin should be configured as A/D input function by configuring the relevant pin-shared function control bits. The desired analog channel then should be selected by configuring the SACS bit field. After this step, go to Step 6.

• Step 5

Before the A/D input signal is selected to come from the internal analog signal by configuring the SAINS bit field, the external input pin must be disabled by properly configuring the relevant pin-shared function control bits. The desired internal analog signal then can be selected by configuring the SAINS bit field. After this step, go to Step 6.

- Step 6
 - Select the reference voltage source by configuring the SAVRS1~SAVRS0 bits in the SADC1 register. If the A/D power supply voltage is selected, the external reference input pin function must be disabled by properly configuring the corresponding pin-shared control bits.
- Step 7
 Select A/D converter output data format by setting the ADRFS bit in the SADC0 register.
- Step 8

If the A/D conversion interrupt is used, the interrupt control registers must be correctly configured to ensure the A/D interrupt function is active. The master interrupt control bit, EMI, and the A/D conversion interrupt control bit, ADE, must both be set high in advance.

- Step 9
 - The A/D conversion procedure can now be initialized by setting the START bit from low to high and then low again.
- Step 10

If A/D conversion is in progress, the ADBZ flag will be set high. After the A/D conversion process is complete, the ADBZ flag will go low and then the output data can be read from SADOH and SADOL registers.

Note: When checking for the end of the conversion process, if the method of polling the ADBZ bit in the SADC0 register is used, the interrupt enable step above can be omitted.

Programming Considerations

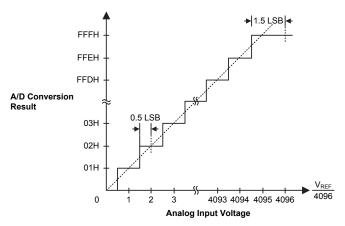
During microcontroller operations where the A/D converter is not being used, the A/D internal circuitry can be switched off to reduce power consumption, by clearing bit ADCEN to 0 in the SADC0 register. When this happens, the internal A/D converter circuits will not consume power irrespective of what analog voltage is applied to their input lines. If the A/D converter input lines are used as normal I/Os, then care must be taken as if the input voltage is not at a valid logic level, then this may lead to some increase in power consumption.

A/D Conversion Function

As the device contains a 12-bit A/D converter, its full-scale converted digitised value is equal to FFFH. Since the full-scale analog input value is equal to the actual A/D converter reference voltage, V_{REF} , this gives a single bit analog input value of V_{REF} divided by 4096.

$$1 LSB = V_{REF} \div 4096$$

The A/D Converter input voltage value can be calculated using the following equation:


A/D input voltage = A/D output digital value \times V_{REF} \div 4096

Rev. 1.20 78 October 25, 2023

The diagram shows the ideal transfer function between the analog input value and the digitised output value for the A/D converter. Except for the digitised zero value, the subsequent digitised values will change at a point 0.5 LSB below where they would change without the offset, and the last full scale digitised value will change at a point 1.5 LSB below the V_{REF} level.

Note that here the V_{REF} voltage is the actual A/D converter reference voltage determined by the SAVRS field.

Ideal A/D Transfer Function

A/D Conversion Programming Examples

The following two programming examples illustrate how to configure and implement an A/D conversion. In the first example, the method of polling the ADBZ bit in the SADC0 register is used to detect when the conversion cycle is complete, whereas in the second example, the A/D interrupt is used to determine when the conversion is complete.

Example: using an ADBZ polling method to detect the end of conversion

```
clr ADE
                      ; disable ADC interrupt
mov a,03h
                      ; select f_{\text{SYS}}/8 as A/D clock and
                      ; select external channel input and external reference input
mov SADC1, a
mov a,0Fh
                      ; set PASO to configure pin ANO and pin VREF
mov PASO, a
mov a,20h
                      ; enable A/D and connect ANO channel to A/D converter
mov SADCO, a
start_conversion:
clr START
                      ; high pulse on start bit to initiate conversion
set. START
                      : reset A/D
clr START
                      ; start A/D
polling EOC:
   ADBZ
                      ; poll the SADCO register ADBZ bit to detect end of A/D conversion
jmp polling EOC
                      ; continue polling
     a,SADOL
                      ; read low byte conversion result value
    SADOL buffer, a
                      ; save result to user defined register
mov a, SADOH
                      ; read high byte conversion result value
mov SADOH buffer,a
                      ; save result to user defined register
jmp start conversion ; start next A/D conversion
```


Example: using the interrupt method to detect the end of conversion

```
clr ADE
                        ; disable ADC interrupt
                       ; select f_{\mbox{\scriptsize SYS}}/8 as A/D clock and ; select external channel input and external reference input
mov a,03h
mov SADC1,a
                         ; set PASO to configure pin ANO and pin VREF
mov a,0Fh
mov PASO,a
mov a,20h
mov SADCO,a ; enable A/D and connect ANO channel to A/D converter
Start conversion:
              ; high pulse on START bit to initiate conversion
clr START
                        ; reset A/D
set START
clr START
                        ; start A/D
clr ADF
                        ; clear ADC interrupt request flag
                       ; enable ADC interrupt
; enable global interrupt
set ADE
set EMI
ADC_ISR: ; ADC interrupt service routine mov acc_stack,a ; save ACC to user defined memory
mov a,STATUS
mov status_stack,a ; save STATUS to user defined memory
mov a, SADOL
                       ; read low byte conversion result value
mov SADOL_buffer,a ; save result to user defined register mov a, SADOH ; read high byte conversion result value mov SADOH_buffer,a ; save result to user defined register
EXIT INT ISR:
mov a, status stack
mov STATUS,a ; restore STATUS from user defined memory
mov a,acc_stack ; restore ACC from user defined memory
reti
```

Rev. 1.20 80 October 25, 2023

Low Voltage Detector - LVD

The device has a Low Voltage Detector function, also known as LVD. This enabled the device to monitor the power supply voltage, V_{DD} , and provide a warning signal should it fall below a certain level. This function may be especially useful in battery applications where the supply voltage will gradually reduce as the battery ages, as it allows an early warning battery low signal to be generated. The Low Voltage Detector also has the capability of generating an interrupt signal.

LVD Register

The Low Voltage Detector function is controlled using a single register with the name LVDC. Three bits in this register, VLVD2 \sim VLVD0, are used to select one of eight fixed voltages below which a low voltage condition will be determined. A low voltage condition is indicated when the LVDO bit is set. If the LVDO bit is low, this indicates that the V_{DD} voltage is above the preset low voltage value. The LVDEN bit is used to control the overall on/off function of the low voltage detector. Setting the bit high will enable the low voltage detector. Clearing the bit to zero will switch off the internal low voltage detector circuits. As the low voltage detector will consume a certain amount of power, it may be desirable to switch off the circuit when not in use, an important consideration in power sensitive battery powered applications.

LVDC Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	LVDO	LVDEN	VBGEN	VLVD2	VLVD1	VLVD0
R/W	_	_	R	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 LVDO: LVD Output flag

0: No low voltage detected

1: Low voltage detected

Bit 4 LVDEN: Low Voltage Detector Enable control

0: Disable 1: Enable

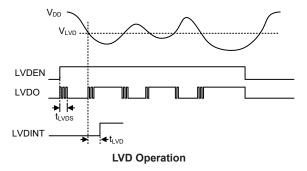
Bit 3 VBGEN: Bandgap Voltage Output Enable control

0: Disable 1: Enable

Note that the Bandgap circuit is enabled when the LVD or LVR function is enabled or when the VBGEN bit is set high.

Bit 2~0 VLVD2~VLVD0: LVD Voltage selection

000: 1.8V


001: 2.0V 010: 2.4V 011: 2.7V

100: 3.0V 101: 3.3V 110: 3.6V 111: 4.0V

LVD Operation

The Low Voltage Detector function operates by comparing the power supply voltage, V_{DD} , with a pre-specified voltage level defined by the LVDC register. This has a range of between 1.8V and 4.0V. When the power supply voltage, V_{DD} , falls below this pre-determined value, the LVDO bit will be set high indicating a low power supply voltage condition. When the device is in the SLEEP mode, the low voltage detector will be disabled even if the LVDEN bit is high. After enabling the Low Voltage Detector, a time delay $t_{\rm LVDS}$ should be allowed for the circuitry to stabilise before reading the LVDO bit. Note also that as the $V_{\rm DD}$ voltage may rise and fall rather slowly, at the voltage nears that of $V_{\rm LVD}$, there may be multiple bit LVDO transitions.

The Low Voltage Detector also has its own interrupt providing an alternative means of low voltage detection, in addition to polling the LVDO bit. The interrupt will only be generated after a delay of t_{LVD} after the LVDO bit has been set high by a low voltage condition, i.e., V_{DD} falls below the preset LVD voltage. In this case, the LVF interrupt request flag will be set, causing an interrupt to be generated. This will cause the device to wake-up from the IDLE Mode, however if the Low Voltage Detector wake up function is not required then the LVF flag should be first set high before the device enters the IDLE Mode.

Interrupts

Interrupts are an important part of any microcontroller system. When an external event or an internal function such as a Timer Module or an A/D converter requires microcontroller attention, their corresponding interrupt will enforce a temporary suspension of the main program allowing the microcontroller to direct attention to their respective needs. The device contains several external interrupt and internal interrupt functions. The external interrupts are generated by the action of the external INT0~INT1 pins, while the internal interrupts are generated by various internal functions including the TM, Time Bases, LVD, EEPROM and the A/D converter.

Interrupt Registers

Overall interrupt control, which basically means the setting of request flags when certain microcontroller conditions occur and the setting of interrupt enable bits by the application program, is controlled by a series of registers, located in the Special Purpose Data Memory, as shown in the accompanying table. The number of registers falls into two categories. The first is the INTC0~INTC2 registers which set the primary interrupts, the second is the INTEG register to set the external interrupt trigger edge type.

Each register contains a number of enable bits to enable or disable individual registers as well as interrupt flags to indicate the presence of an interrupt request. The naming convention of these follows a specific pattern. First is listed an abbreviated interrupt type, then the (optional) number of that interrupt followed by either an "E" for enable/disable bit or "F" for request flag.

Rev. 1.20 82 October 25, 2023

Function	Enable Bit	Request Flag	Notes
Global	EMI	_	_
INTn Pin	INTnE	INTnF	n=0 or 1
Time Bases	TBnE	TBnF	n=0 or 1
A/D Converter	ADE	ADF	_
LVD	LVE	LVF	_
EEPROM	DEE	DEF	_
DTM	PTMPE	PTMPF	_
PTM	PTMAE	PTMAF	_

Interrupt Register Bit Naming Conventions

Register		Bit									
Name	7	7 6 5 4 3		2	1	0					
INTEG	_	_	_	_	INTS3	INTS2	INTS1	INTS0			
INTC0	_	PTMPF	INT1F	INT0F	PTMPE	INT1E	INT0E	EMI			
INTC1	ADF	TB1F	TB0F	PTMAF	ADE	TB1E	TB0E	PTMAE			
INTC2	_	_	DEF	LVF	_	_	DEE	LVE			

Interrupt Register List

• INTEG Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	INTS3	INTS2	INTS1	INTS0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3~2 INTS3~INTS2: Interrupt edge control for INT1 pin

00: Disable01: Rising edge10: Falling edge

11: Rising and falling edges

Bit 1~0 INTS1~INTS0: Interrupt edge control for INT0 pin

00: Disable 01: Rising edge

10: Falling edge11: Rising and falling edges

• INTC0 Register

Bit	7	6	5	4	3	2	1	0
Name	_	PTMPF	INT1F	INT0F	PTMPE	INT1E	INT0E	EMI
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	0	0	0	0	0	0	0

Bit 7 Unimplemented, read as "0"

Bit 6 PTMPF: PTM Comparator P match interrupt request flag

0: No request1: Interrupt request

Bit 5 INT1F: INT1 interrupt request flag

0: No request1: Interrupt request

Bit 4 INT0F: INT0 interrupt request flag

0: No request1: Interrupt request

Bit 3 **PTMPE**: PTM Comparator P match interrupt control

0: Disable 1: Enable

Bit 2 INT1E: INT1 interrupt control

0: Disable 1: Enable

Bit 1 **INT0E**: INT0 interrupt control

0: Disable 1: Enable

Bit 0 **EMI**: Global interrupt control

0: Disable 1: Enable

• INTC1 Register

Bit	7	6	5	4	3	2	1	0
Name	ADF	TB1F	TB0F	PTMAF	ADE	TB1E	TB0E	PTMAE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **ADF**: A/D converter interrupt request flag

0: No request1: Interrupt request

Bit 6 **TB1F**: Time Base 1 interrupt request flag

0: No request1: Interrupt request

Bit 5 **TB0F**: Time Base 0 interrupt request flag

0: No request1: Interrupt request

Bit 4 **PTMAF**: PTM Comparator A match interrupt request flag

0: No request1: Interrupt request

Bit 3 ADE: A/D converter interrupt control

0: Disable 1: Enable

Bit 2 **TB1E**: Time Base 1 interrupt control

0: Disable 1: Enable

Bit 1 **TB0E**: Time Base 0 interrupt control

0: Disable 1: Enable

Bit 0 **PTMAE**: PTM Comparator A match interrupt control

0: Disable 1: Enable

• INTC2 Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	DEF	LVF	_	_	DEE	LVE
R/W	_	_	R/W	R/W	_	_	R/W	R/W
POR	_	_	0	0	_	_	0	0

Bit 7~6 Unimplemented, read as "0"

Bit 5 **DEF**: Data EEPROM interrupt request flag

0: No request1: Interrupt request

Bit 4 LVF: LVD interrupt request flag

0: No request1: Interrupt request

Bit 3~2 Unimplemented, read as "0"

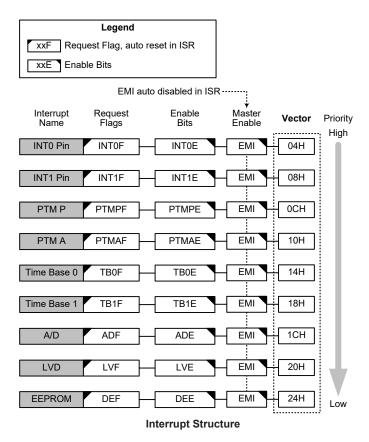
Bit 1 **DEE**: Data EEPROM interrupt control

0: Disable1: Enable

Bit 0 LVE: LVD interrupt control

0: Disable 1: Enable

Interrupt Operation


When the conditions for an interrupt event occur, such as a TM Comparator P or Comparator A match or A/D conversion completion etc., the relevant interrupt request flag will be set. Whether the request flag actually generates a program jump to the relevant interrupt vector is determined by the condition of the interrupt enable bit. If the enable bit is set high then the program will jump to its relevant vector; if the enable bit is zero then although the interrupt request flag is set an actual interrupt will not be generated and the program will not jump to the relevant interrupt vector. The global interrupt enable bit, if cleared to zero, will disable all interrupts.

When an interrupt is generated, the Program Counter, which stores the address of the next instruction to be executed, will be transferred onto the stack. The Program Counter will then be loaded with a new address which will be the value of the corresponding interrupt vector. The microcontroller will then fetch its next instruction from this interrupt vector. The instruction at this vector will usually be a "JMP" which will jump to another section of program which is known as the interrupt service routine. Here is located the code to control the appropriate interrupt. The interrupt service routine must be terminated with a "RETI", which retrieves the original Program Counter address from the stack and allows the microcontroller to continue with normal execution at the point where the interrupt occurred.

The various interrupt enable bits, together with their associated request flags, are shown in the accompanying diagrams with their order of priority. All interrupt sources have their own individual vector. Once an interrupt subroutine is serviced, all the other interrupts will be blocked, as the global interrupt enable bit, EMI bit will be cleared automatically. This will prevent any further interrupt nesting from occurring. However, if other interrupt requests occur during this interval, although the interrupt will not be immediately serviced, the request flag will still be recorded.

If an interrupt requires immediate servicing while the program is already in another interrupt service routine, the EMI bit should be set after entering the routine, to allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired, the stack must be prevented from becoming full. In case of simultaneous requests, the accompanying diagram shows the priority that is applied. All of the interrupt request flags when set will wake-up the device if it is in SLEEP or IDLE Mode, however to prevent a wake-up from occurring the corresponding flag should be set before the device is in SLEEP or IDLE Mode.

Rev. 1.20 85 October 25, 2023

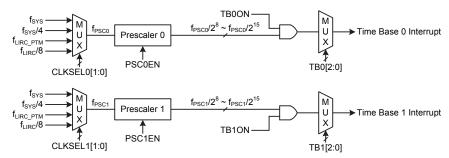
External Interrupts

The external interrupts are controlled by signal transitions on the pins INT0 and INT1. An external interrupt request will take place when the external interrupt request flags, INT0F~INT1F, are set, which will occur when a transition, whose type is chosen by the edge select bits, appears on the external interrupt pins. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and respective external interrupt enable bit, INT0E~INT1E, must first be set. Additionally the correct interrupt edge type must be selected using the INTEG register to enable the external interrupt function and to choose the trigger edge type. As the external interrupt pins are pin-shared with I/O pins, they can only be configured as external interrupt pins if their external interrupt enable bit in the corresponding interrupt register has been set and the external interrupt pin is selected by the corresponding pin-shared function selection bits. The pin must also be set as an input by setting the corresponding bit in the port control register. When the interrupt is enabled, the stack is not full and the correct transition type appears on the external interrupt pin, a subroutine call to the external interrupt vector, will take place. When the interrupt is serviced, the external interrupt request flags, INT0F~INT1F, will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts. Note that any pull-high resistor selections on the external interrupt pins will remain valid even if the pin is used as an external interrupt input.

The INTEG register is used to select the type of active edge that will trigger the external interrupt. A choice of either rising or falling or both edge types can be chosen to trigger an external interrupt. Note that the INTEG register can also be used to disable the external interrupt function.

Rev. 1.20 86 October 25, 2023

TM Interrupts


The Periodic Type TM has two interrupts, one comes from the comparator A match situation and the other comes from the comparator P match situation. For the Periodic Type TM there are two interrupt request flags and two enable control bits. A PTM interrupt request will take place when any of the PTM request flags are set, a situation which occurs when a PTM comparator P or A match situation happens.

To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the PTM Interrupt enable bit must first be set. When the interrupt is enabled, the stack is not full and a PTM comparator match situation occurs, a subroutine call to the PTM Interrupt vector location, will take place. When the PTM interrupt is serviced, the PTM interrupt request flags will be automatically reset and the EMI bit will be automatically cleared to disable other interrupts.

Time Base Interrupts

The function of the Time Base Interrupts is to provide regular time signal in the form of an internal interrupt. They are controlled by the overflow signals from their respective timer functions. When these happens their respective interrupt request flags, TB0F or TB1F will be set. To allow the program to branch to their respective interrupt vector addresses, the global interrupt enable bit, EMI and Time Base enable bits, TB0E or TB1E, must first be set. When the interrupt is enabled, the stack is not full and the Time Base overflows, a subroutine call to their respective vector locations will take place. When the interrupt is serviced, the respective interrupt request flag, TB0F or TB1F, will be automatically reset and the EMI bit will be cleared to disable other interrupts.

The purpose of the Time Base Interrupt is to provide an interrupt signal at fixed time periods. Its clock source, f_{PSC0} or f_{PSC1} , originates from the internal clock source f_{SYS} , $f_{SYS}/4$, f_{LIRC_PTM} or $f_{LIRC}/8$ and then passes through a divider, the division ratio of which is selected by programming the appropriate bits in the TB0C and TB1C registers to obtain longer interrupt periods whose value ranges. The clock source which in turn controls the Time Base interrupt period is selected using the CLKSEL0[1:0] bits in the PSC1R register respectively.

Time Base Interrupts

PSC0R Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	PSC0EN	CLKSEL01	CLKSEL00
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	0	0	0

Bit 7~3 Unimplemented, read as "0"

Rev. 1.20 87 October 25, 2023

Bit 2 **PSC0EN**: Prescaler 0 control

0: Disable 1: Enable

Bit 1~0 CLKSEL01~CLKSEL00: Prescaler 0 clock source f_{PSC0} selection

 $\begin{array}{l} 00: \, f_{SYS} \\ 01: \, f_{SYS}/4 \\ 10: \, f_{LIRC_PTM} \\ 11: \, f_{LIRC}/8 \end{array}$

• PSC1R Register

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	PSC1EN	CLKSEL11	CLKSEL10
R/W	_	_	_	_	_	R/W	R/W	R/W
POR	_	_	_	_	_	0	0	0

Bit 7~3 Unimplemented, read as "0"

Bit 2 **PSC1EN**: Prescaler 1 control

0: Disable 1: Enable

Bit 1~0 CLKSEL11~CLKSEL10: Prescaler 1 clock source f_{PSC1} selection

 $\begin{array}{c} 00: \, f_{SYS} \\ 01: \, f_{SYS}/4 \\ 10: \, f_{LIRC_PTM} \\ 11: \, f_{LIRC}/8 \end{array}$

• TB0C Register

Bit	7	6	5	4	3	2	1	0
Name	TB0ON	_	_	_	_	TB02	TB01	TB00
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB0ON**: Time Base 0 Control

0: Disable 1: Enable

Bit 6~3 Unimplemented, read as "0"

Bit 2~0 **TB02~TB00**: Select Time Base 0 Time-out Period

 $\begin{array}{l} 000:\ 2^8/f_{PSC0} \\ 001:\ 2^9/f_{PSC0} \\ 010:\ 2^{10}/f_{PSC0} \\ 011:\ 2^{11}/f_{PSC0} \\ 100:\ 2^{12}/f_{PSC0} \\ 101:\ 2^{13}/f_{PSC0} \\ 101:\ 2^{14}/f_{PSC0} \\ 110:\ 2^{14}/f_{PSC0} \\ 111:\ 2^{15}/f_{PSC0} \end{array}$

• TB1C Register

Bit	7	6	5	4	3	2	1	0
Name	TB10N	_	_	_	_	TB12	TB11	TB10
R/W	R/W	_	_	_	_	R/W	R/W	R/W
POR	0	_	_	_	_	0	0	0

Bit 7 **TB1ON**: Time Base 1 Control

0: Disable 1: Enable

Rev. 1.20 88 October 25, 2023

Bit $6{\sim}3$ Unimplemented, read as "0" Bit $2{\sim}0$ TB12~TB10: Select Time Base 1 Time-out Period $000: 2^8/f_{PSC1}$ $001: 2^9/f_{PSC1}$ $010: 2^{10}/f_{PSC1}$ $011: 2^{11}/f_{PSC1}$ $011: 2^{11}/f_{PSC1}$ $100: 2^{12}/f_{PSC1}$ $101: 2^{13}/f_{PSC1}$ $110: 2^{14}/f_{PSC1}$ $111: 2^{15}/f_{PSC1}$

A/D Converter Interrupt

An A/D Converter Interrupt request will take place when the A/D Converter Interrupt request flag, ADF, is set, which occurs when the A/D conversion process finishes. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and A/D Interrupt enable bit, ADE, must first be set. When the interrupt is enabled, the stack is not full and the A/D conversion process has ended, a subroutine call to the A/D Interrupt vector, will take place. When the A/D Converter Interrupt is serviced, the A/D Interrupt flag, ADF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

LVD Interrupt

An LVD Interrupt request will take place when the LVD Interrupt request flag, LVF, is set, which occurs when the Low Voltage Detector function detects a low power supply voltage. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and the Low Voltage Interrupt enable bit, LVE, must first be set. When the interrupt is enabled, the stack is not full and a low voltage condition occurs, a subroutine call to the LVD Interrupt vector, will take place. When the Low Voltage Interrupt is serviced, the LVF flag will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

EEPROM Interrupt

An EEPROM Interrupt request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs when an EEPROM Write cycle ends. To allow the program to branch to its respective interrupt vector address, the global interrupt enable bit, EMI, and EEPROM Interrupt enable bit, DEE, must first be set. When the interrupt is enabled, the stack is not full and an EEPROM Write cycle ends, a subroutine call to the EEPROM Interrupt vector will take place. When the EEPROM Interrupt is serviced, the EEPROM Interrupt flag, DEF, will be automatically cleared. The EMI bit will also be automatically cleared to disable other interrupts.

Interrupt Wake-up Function

Each of the interrupt functions has the capability of waking up the microcontroller when in the SLEEP or IDLE Mode. A wake-up is generated when an interrupt request flag changes from low to high and is independent of whether the interrupt is enabled or not. Therefore, even though the device is in the SLEEP or IDLE Mode and its system oscillator stopped, situations such as external edge transitions on the external interrupt pins or a low power supply voltage may cause their respective interrupt flag to be set high and consequently generate an interrupt. Care must therefore be taken if spurious wake-up situations are to be avoided. If an interrupt wake-up function is to be disabled then the corresponding interrupt request flag should be set high before the device enters the SLEEP or IDLE Mode. The interrupt enable bits have no effect on the interrupt wake-up function.

Programming Considerations

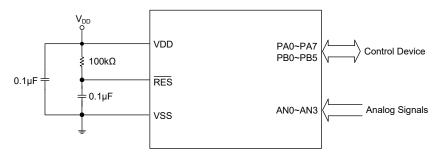
By disabling the relevant interrupt enable bits, a requested interrupt can be prevented from being serviced, however, once an interrupt request flag is set, it will remain in this condition in the interrupt register until the corresponding interrupt is serviced or until the request flag is cleared by the application program.

It is recommended that programs do not use the "CALL" instruction within the interrupt service subroutine. Interrupts often occur in an unpredictable manner or need to be serviced immediately. If only one stack is left and the interrupt is not well controlled, the original control sequence will be damaged once a CALL subroutine is executed in the interrupt subroutine.

Every interrupt has the capability of waking up the microcontroller when it is in the SLEEP or IDLE Mode, the wake up being generated when the interrupt request flag changes from low to high. If it is required to prevent a certain interrupt from waking up the microcontroller then its respective request flag should be first set high before enter SLEEP or IDLE Mode.

As only the Program Counter is pushed onto the stack, then when the interrupt is serviced, if the contents of the accumulator, status register or other registers are altered by the interrupt service program, their contents should be saved to the memory at the beginning of the interrupt service routine.

To return from an interrupt subroutine, either a RET or RETI instruction may be executed. The RETI instruction in addition to executing a return to the main program also automatically sets the EMI bit high to allow further interrupts. The RET instruction however only executes a return to the main program leaving the EMI bit in its present zero state and therefore disabling the execution of further interrupts.


Configuration Options

Configuration options refer to certain options within the MCU that are programmed into the device during the programming process. During the development process, these options are selected using the HT-IDE software development tools. As these options are programmed into the device using the hardware programming tools, once they are selected they cannot be changed later using the application program. All options must be defined for proper system function, the details of which are shown in the table.

No.	Option
1	HIRC Frequency Selection – f _{HIRC} : 2MHz, 4MHz or 8MHz

Note: When the HIRC has been configured at a frequency shown in this table, it is recommended to configure the HIRC1 and HIRC0 bits in the HIRCC register to select the same frequency to ensure a higher HIRC frequency accuracy specified in the A.C. characteristics.

Application Circuits

Rev. 1.20 90 October 25, 2023

Instruction Set

Introduction

Central to the successful operation of any microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to perform certain operations. In the case of Holtek microcontroller, a comprehensive and flexible set of over 60 instructions is provided to enable programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are required. One instruction cycle is equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instructions would be implemented within 0.5µs and branch or call instructions would be implemented within 1µs. Although instructions which require one more cycle to implement are generally limited to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions which involve manipulation of the Program Counter Low register or PCL will also take one more cycle to implement. As instructions which change the contents of the PCL will imply a direct jump to that new address, one more cycle will be required. Examples of such instructions would be "CLR PCL" or "MOV PCL, A". For the case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then this will also take one more cycle, if no skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used operations. Making use of three kinds of MOV instructions, data can be transferred from registers to the Accumulator and vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most important data transfer applications is to receive data from the input ports and transfer data to the output ports.

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature of most microcontroller applications. Within the Holtek microcontroller instruction set are a range of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA, DEC and DECA provide a simple means of increasing or decreasing by a value of one of the values in the destination specified.

Rev. 1.20 91 October 25, 2023

Logical and Rotate Operation

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction within the Holtek microcontroller instruction set. As with the case of most instructions involving data manipulation, data must pass through the Accumulator which may involve additional programming steps. In all logical data operations, the zero flag may be set if the result of the operation is zero. Another form of logical data manipulation comes from the rotate instructions such as RR, RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for serial port programming applications where data can be rotated from an internal register into the Carry bit from where it can be examined and the necessary serial bit set high or low. Another application which rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subroutine call, the program must return to the instruction immediately when the subroutine has been carried out. This is done by placing a return instruction "RET" in the subroutine which will cause the program to jump back to the address right after the CALL instruction. In the case of a JMP instruction, the program simply jumps to the desired location. There is no requirement to jump back to the original jumping off point as in the case of the CALL instruction. One special and extremely useful set of branch instructions are the conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program will continue with the next instruction or skip over it and jump to the following instruction. These instructions are the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek microcontrollers. This feature is especially useful for output port bit programming where individual bits or port pins can be directly set high or low using either the "SET [m].i" or "CLR [m].i" instructions respectively. The feature removes the need for programmers to first read the 8-bit output port, manipulate the input data to ensure that other bits are not changed and then output the port with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an area of Program Memory to be set as a table where data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be referenced and retrieved from the Program Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as the "HALT" instruction for Power-down operations and instructions to control the operation of the Watchdog Timer for reliable program operations under extreme electric or electromagnetic environments. For their relevant operations, refer to the functional related sections.

Rev. 1.20 92 October 25, 2023

Instruction Set Summary

The following table depicts a summary of the instruction set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.

Table Conventions

x: Bits immediate datam: Data Memory address

A: Accumulator i: 0~7 number of bits

addr: Program memory address

Mnemonic	Description	Cycles	Flag Affected
Arithmetic			
ADD A,[m]	Add Data Memory to ACC	1	Z, C, AC, OV
ADDM A,[m]	Add ACC to Data Memory	1 Note	Z, C, AC, OV
ADD A,x	Add immediate data to ACC	1	Z, C, AC, OV
ADC A,[m]	Add Data Memory to ACC with Carry	1	Z, C, AC, OV
ADCM A,[m]	Add ACC to Data memory with Carry	1 Note	Z, C, AC, OV
SUB A,x	Subtract immediate data from the ACC	1	Z, C, AC, OV
SUB A,[m]	Subtract Data Memory from ACC	1	Z, C, AC, OV
SUBM A,[m]	Subtract Data Memory from ACC with result in Data Memory	1 Note	Z, C, AC, OV
SBC A,[m]	Subtract Data Memory from ACC with Carry	1	Z, C, AC, OV
SBCM A,[m]	Subtract Data Memory from ACC with Carry, result in Data Memory	1 Note	Z, C, AC, OV
DAA [m]	Decimal adjust ACC for Addition with result in Data Memory	1 Note	С
Logic Operati	on		
AND A,[m]	Logical AND Data Memory to ACC	1	Z
OR A,[m]	Logical OR Data Memory to ACC	1	Z
XOR A,[m]	Logical XOR Data Memory to ACC	1	Z
ANDM A,[m]	Logical AND ACC to Data Memory	1 Note	Z
ORM A,[m]	Logical OR ACC to Data Memory	1 Note	Z
XORM A,[m]	Logical XOR ACC to Data Memory	1 Note	Z
AND A,x	Logical AND immediate Data to ACC	1	Z
OR A,x	Logical OR immediate Data to ACC	1	Z
XOR A,x	Logical XOR immediate Data to ACC	1	Z
CPL [m]	Complement Data Memory	1 Note	Z
CPLA [m]	Complement Data Memory with result in ACC	1	Z
Increment & D	Decrement		
INCA [m]	Increment Data Memory with result in ACC	1	Z
INC [m]	Increment Data Memory	1 Note	Z
DECA [m]	Decrement Data Memory with result in ACC	1	Z
DEC [m]	Decrement Data Memory	1 Note	Z
Rotate			
RRA [m]	Rotate Data Memory right with result in ACC	1	None
RR [m]	Rotate Data Memory right	1 Note	None
RRCA [m]	Rotate Data Memory right through Carry with result in ACC	1	С
RRC [m]	Rotate Data Memory right through Carry	1 Note	С
RLA [m]	Rotate Data Memory left with result in ACC	1	None
RL [m]	Rotate Data Memory left	1 Note	None
RLCA [m]	Rotate Data Memory left through Carry with result in ACC	1	С
RLC [m]	Rotate Data Memory left through Carry	1 Note	С

Mnemonic	Description	Cycles	Flag Affected
Data Move			
MOV A,[m]	Move Data Memory to ACC	1	None
MOV [m],A	Move ACC to Data Memory	1 ^{Note}	None
MOV A,x	Move immediate data to ACC	1	None
Bit Operation			
CLR [m].i	Clear bit of Data Memory	1 ^{Note}	None
SET [m].i	Set bit of Data Memory	1 ^{Note}	None
Branch Opera	tion		
JMP addr	Jump unconditionally	2	None
SZ [m]	Skip if Data Memory is zero	1 ^{Note}	None
SZA [m]	Skip if Data Memory is zero with data movement to ACC	1 ^{Note}	None
SZ [m].i	Skip if bit i of Data Memory is zero	1 ^{Note}	None
SNZ [m].i	Skip if bit i of Data Memory is not zero	1 ^{Note}	None
SIZ [m]	Skip if increment Data Memory is zero	1 ^{Note}	None
SDZ [m]	Skip if decrement Data Memory is zero	1 ^{Note}	None
SIZA [m]	Skip if increment Data Memory is zero with result in ACC	1 ^{Note}	None
SDZA [m]	Skip if decrement Data Memory is zero with result in ACC	1 ^{Note}	None
CALL addr	Subroutine call	2	None
RET	Return from subroutine	2	None
RET A,x	Return from subroutine and load immediate data to ACC	2	None
RETI	Return from interrupt	2	None
Table Read Op	peration		
TABRD [m]	Read table (specific page or current page) to TBLH and Data Memory	2 ^{Note}	None
TABRDL [m]	Read table (last page) to TBLH and Data Memory	2 ^{Note}	None
Miscellaneous			
NOP	No operation	1	None
CLR [m]	Clear Data Memory	1 ^{Note}	None
SET [m]	Set Data Memory	1 ^{Note}	None
CLR WDT	Clear Watchdog Timer	1	TO, PDF
SWAP [m]	Swap nibbles of Data Memory	1 ^{Note}	None
SWAPA [m]	Swap nibbles of Data Memory with result in ACC	1	None
HALT	Enter power down mode	1	TO, PDF

Note: 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required, if no skip takes place only one cycle is required.

Rev. 1.20 94 October 25, 2023

^{2.} Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added.

The result is stored in the specified Data Memory.

Operation $[m] \leftarrow ACC + [m] + C$

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + [m]$ Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added.

The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC + x$ Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added.

The result is stored in the specified Data Memory.

 $\begin{aligned} & \text{Operation} & & [m] \leftarrow ACC + [m] \\ & \text{Affected flag(s)} & & \text{OV, Z, AC, C} \end{aligned}$

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" [m]$

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bit wise logical AND

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "AND" x$

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "AND" [m]$

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then

increments by 1 to obtain the address of the next instruction which is then pushed onto the stack. The specified address is then loaded and the program continues execution from this new address. As this instruction requires an additional operation, it is a two cycle instruction.

Operation Stack \leftarrow Program Counter + 1

Program Counter ← addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation $[m] \leftarrow 00H$ Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

 $\begin{aligned} & \text{Operation} & & [m].i \leftarrow 0 \\ & \text{Affected flag(s)} & & \text{None} \end{aligned}$

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

 $TO \leftarrow 0$ $PDF \leftarrow 0$

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1's complement).

Bits which previously contained a 1 are changed to 0 and vice versa.

Operation $[m] \leftarrow \overline{[m]}$

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1's complement).

Bits which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow \overline{[m]}$

Affected flag(s) Z

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value

resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of 6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C flag may be affected by this instruction which indicates that if the original BCD sum is greater than

100, it allows multiple precision decimal addition.

Operation $[m] \leftarrow ACC + 00H$ or

 $[m] \leftarrow ACC + 06H \text{ or}$ $[m] \leftarrow ACC + 60H \text{ or}$ $[m] \leftarrow ACC + 66H$

Affected flag(s)

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation $[m] \leftarrow [m] - 1$

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] - 1$

Affected flag(s) Z

HALT Enter power down mode

Description This instruction stops the program execution and turns off the system clock. The contents of

the Data Memory and registers are retained. The WDT and prescaler are cleared. The power

down flag PDF is set and the WDT time-out flag TO is cleared.

Operation $TO \leftarrow 0$

 $PDF \leftarrow 1$

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation $[m] \leftarrow [m] + 1$

Affected flag(s) Z

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the

Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC \leftarrow [m] + 1$

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter ← addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation $ACC \leftarrow [m]$

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation $ACC \leftarrow x$ Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

 $\begin{array}{ll} \text{Operation} & [m] \leftarrow \text{ACC} \\ \text{Affected flag(s)} & \text{None} \end{array}$

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise

logical OR operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" [m]$

Affected flag(s) Z

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "OR" x$

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "OR" [m]$

Affected flag(s) Z

Rev. 1.20 98 October 25, 2023

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the restored

address.

Operation Program Counter ← Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the specified

immediate data. Program execution continues at the restored address.

Operation Program Counter ← Stack

 $ACC \leftarrow x$

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by setting the

EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending when the RETI instruction is executed, the pending Interrupt routine will be processed before returning

to the main program.

Operation Program Counter ← Stack

 $EMI \leftarrow 1$

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow [m].7$

Affected flag(s) None

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit 0.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow [m].7$

Affected flag(s) None

RLC [m] Rotate Data Memory left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the Carry bit and the original carry flag is rotated into bit 0.

Operation $[m].(i+1) \leftarrow [m].i; (i=0\sim6)$

 $[m].0 \leftarrow C$ $C \leftarrow [m].7$

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) \leftarrow [m].i; (i=0 \sim 6)

 $ACC.0 \leftarrow C$

 $C \leftarrow [m].7$

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into bit 7.

Operation [m].i \leftarrow [m].(i+1); (i=0 \sim 6)

 $[m].7 \leftarrow [m].0$

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory is rotated right by 1 bit with bit 0 rotated into bit 7.

The rotated result is stored in the Accumulator and the contents of the Data Memory remain

unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow [m].0$

Affected flag(s) None

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the Carry bit and the original carry flag is rotated into bit 7.

Operation [m].i \leftarrow [m].(i+1); (i=0 \sim 6)

 $[m].7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces

the Carry bit and the original carry flag is rotated into bit 7. The rotated result is stored in the

Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i \leftarrow [m].(i+1); (i=0 \sim 6)

 $ACC.7 \leftarrow C$

 $C \leftarrow [m].0$

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m] - \overline{C}$

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] - 1$

Skip if [m]=0

Affected flag(s) None

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0,

the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] - 1$

Skip if ACC=0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation $[m] \leftarrow FFH$ Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

 $\begin{aligned} & \text{Operation} & & [m].i \leftarrow 1 \\ & \text{Affected flag(s)} & & \text{None} \end{aligned}$

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation $[m] \leftarrow [m] + 1$

Skip if [m]=0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified Data Memory contents remain unchanged. As this requires the insertion of a dummy

instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation $ACC \leftarrow [m] + 1$

Skip if ACC=0

Affected flag(s) None

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this

requires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m]. $i \neq 0$

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - [m]$

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result is

stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be

cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $[m] \leftarrow ACC - [m]$ Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumulator.

The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C

flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.

Operation $ACC \leftarrow ACC - x$ Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3 \sim [m].0 \leftrightarrow [m].7 \sim [m].4

Affected flag(s) None

Rev. 1.20 October 25, 2023

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation $ACC.3\sim ACC.0 \leftarrow [m].7\sim [m].4$

 $ACC.7 \sim ACC.4 \leftarrow [m].3 \sim [m].0$

Affected flag(s) None

SZ [m] Skip if Data Memory is 0

Description The contents of the specified Data Memory are read out and then written to the specified Data

Memory again. If the contents of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program proceeds with the

following instruction.

Operation Skip if [m]=0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is zero,

the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation $ACC \leftarrow [m]$

Skip if [m]=0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires

the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i=0

Affected flag(s) None

TABRD [m] Read table (specific page or current page) to TBLH and Data Memory

Description The low byte of the program code addressed by the table pointer (TBHP and TBLP or only

TBLP if no TBHP) is moved to the specified Data Memory and the high byte moved to

TBLH.

Operation $[m] \leftarrow \text{program code (low byte)}$

TBLH ← program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is moved

to the specified Data Memory and the high byte moved to TBLH.

Operation $[m] \leftarrow program code (low byte)$

TBLH ← program code (high byte)

Affected flag(s) None

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR

operation. The result is stored in the Data Memory.

Operation $[m] \leftarrow ACC "XOR" [m]$

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

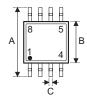
operation. The result is stored in the Accumulator.

Operation $ACC \leftarrow ACC "XOR" x$

Affected flag(s) Z

Rev. 1.20 104 October 25, 2023

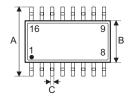
Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package Information</u>.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- · Carton information

8-pin SOP (150mil) Outline Dimensions


Sumbol		Dimensions in inch			
Symbol	Min.	Nom.	Max.		
A		0.236 BSC			
В		0.154 BSC			
С	0.012	0.020			
C'	0.193 BSC				
D	_	_	0.069		
E		0.050 BSC			
F	0.004	_	0.010		
G	0.016	_	0.050		
Н	0.004 — 0.010				
α	0°	_	8°		

Cymphal		Dimensions in mm			
Symbol	Min.	Nom.	Max.		
А		6.00 BSC			
В		3.90 BSC			
С	0.31	_	0.51		
C'	4.90 BSC				
D	_	_	1.75		
E		1.27 BSC			
F	0.10	_	0.25		
G	0.40	_	1.27		
Н	0.10 — 0.25				
α	0°	_	8°		

Rev. 1.20 October 25, 2023

16-pin NSOP (150mil) Outline Dimensions

Symbol		Dimensions in inch						
Symbol	Min.	Nom.	Max.					
A		0.236 BSC						
В		0.154 BSC						
С	0.012	_	0.020					
C,		0.390 BSC						
D	_	_	0.069					
Е		0.050 BSC						
F	0.004	_	0.010					
G	0.016	_	0.050					
Н	0.004 — 0.010							
α	0°	_	8°					

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	6.00 BSC		
В	3.90 BSC		
С	0.31	_	0.51
C'	9.90 BSC		
D	_	_	1.75
E	1.27 BSC		
F	0.10	_	0.25
G	0.40	_	1.27
Н	0.10	_	0.25
α	0°	_	8°

Copyright® 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.

Rev. 1.20 108 October 25, 2023