

2x25W Stereo / 1x50W Mono Digital Audio Amplifier With 32 bands EQ and DRC Functions + 2Vrms Line Driver

Features

- 16/18/20/24-bits input with I²S, Left-alignment, Right-alignment and TDM data format
- PSNR & DR(A-weighting)
 Loudspeaker: 107dB (PSNR), 108dB (DR)@24V
- Multiple sampling frequencies (Fs)
 8kHz, 16kHz, 32kHz/44.1kHz/48kHz and
 64kHz/88.2kHz/96kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs MCLK system:

256x~4096x Fs for 8kHz 128x~2048x Fs for 16kHz

64x~1024x Fs for 32kHz/44.1kHz/48kHz

 $64x\sim512x$ Fs for 64kHz/88.2kHz/96kHz

BCLK system:

64x Fs for 32kHz/44.1kHz/48kHz 64x Fs for 64kHz/88.2kHz/96kHz

- Supply voltage1.65~3.6V for DVDDIO; 3.0~3.6V for DVDD8~26V for PVDD
- Supports 2.0CH/Mono configuration
- Loudspeaker output power@12V for stereo 8W x 2CH into 8Ω @ 1% THD+N
 15W x 2CH into 4Ω @ 1% THD+N
- Loudspeaker output power@24V for stereo
 25W x 2CH into 8Ω <1% THD+N
- Sound processing including:
 32 bands parametric speaker EQ
 Volume control (+24dB~-103dB, 0.125dB/step)
 Dynamic range control
 Three Band plus post Dynamic range control

Power Clipping

Programmed 3D surround sound

Channel mixing

Noise gate with hysteresis window

DC-blocking high-pass filter

Pre-scale/post-scale

Post-Boost (+48dB)

I2S output with user programmed gain (+24dB~mute)

Anti-pop design

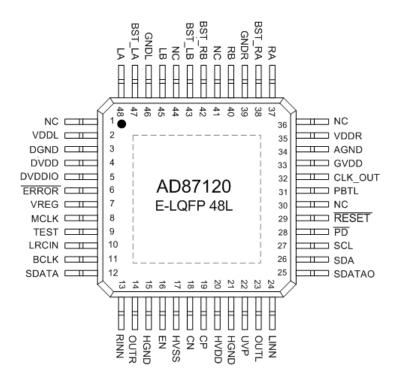
- Level meter and power meter
- I²S output with selectable Audio DSP point
- Short circuit and over-temperature protection
- Supports I²C control without clock
- I²C control interface with selectable device address
- Support hardware and software reset
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Over voltage protection

Applications

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker

Description

The AD87120 is an integrated audio system solution, embedding digital audio process, power stage amplifier and a stereo 2Vrms line driver. AD87120 is a digital audio amplifier capable of driving 25W (BTL) each to a pair of 8Ω load speaker and 50W (PBTL) to a 4Ω load speaker operating at 24V supply without external heat-sink or fan requirement with play music. AD87120 provides advanced audio processing functions, such as volume control, 32 EQ bands, audio mixing, 3D surround sound and Dynamic Range Control (DRC). These are fully programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD87120 from damage due to accidental erroneous operating condition. The full digital circuit design of AD87120 is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog class-AB or class-D audio amplifier counterpart implemented by analog circuit design. AD87120 is pop free during instantaneous power on/off or mute/shut down switching because of its robust built-in anti-pop circuit.


Publication Date: Nov. 2021

1/103

Revision: 0.7

Pin Assignment

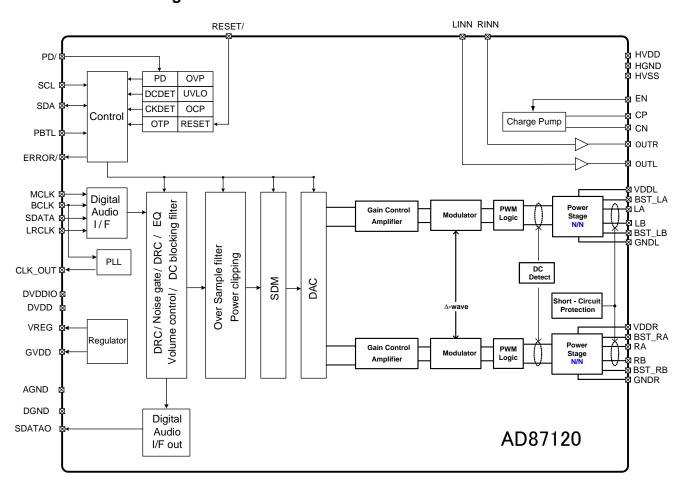
Pin Description

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	NC	-	Not connected.	
2	VDDL	Р	Left channel supply.	
3	DGND	Р	Digital Ground.	
4	DVDD	Р	Digital Power.	
5	DVDDIO	Р	Digital Power for I/O circuit.	
6	ERROR	AI/O	This Pin is a dual function pin. One is I2C address setting during power up initial. After power up, it is indicator for error status report (low active), it sets by register of A_SEL_FAULT at address 0x1C B[6] to enable it.	This pin is monitored on the rising edge of reset. It will determine the slave address of AD87120 and define in the device addressing part.
7	VREG	Р	1.8V Regulator voltage output, this pin must not be used to drive external devices.	
8	MCLK	DI	Master clock input.	Schmitt trigger TTL input buffer, internal pull Low with a 100Kohm resistor.

Publication Date: Nov. 2021 Revision: 0.7 2/103

				Schmitt trigger TTL input buffer,
9	TEST	DI	Test pin.	internal pull Low with a 100Kohm
				resistor.
				Schmitt trigger TTL input buffer,
10	LRCIN	DI	Left/Right clock input (Fs).	internal pull Low with a 100Kohm
				resistor.
				Schmitt trigger TTL input buffer,
11	BCLK	DI	Bit clock input.	internal pull Low with a 100Kohm
				resistor.
12	SDATA	DI	Serial audio data input.	Schmitt trigger TTL input buffer.
13	RINN	Al	Right input for line driver.	
14	OUTR	AO	Right output for line driver.	
15	HGND	Р	Ground for line driver.	
16	EN	DI	Enable for line driver.	
47	111/00	_	Negative supply voltage for line driver, it's	
17	HVSS	P	generated by charge pump circuit.	
40	ON	A1/O	Charge pump flying capacitor negative	
18	B CN AI/O		connection for line driver.	
40	0.0	41/0	Charge pump flying capacitor positive	
19	CP	AI/O	connection for line driver.	
20	HVDD	Р	Supply voltage for line driver.	
21	HGND	Р	Ground for line driver.	
22	UVP	Al	Under voltage protection for line driver.	Pulled high internally.
23	OUTL	AO	Left output for Line driver.	
24	LINN	Al	Left input for Line driver.	
25	SDATAO	DO	Serial audio data output.	Schmitt trigger TTL output buffer
26	SDA	DI/O	I ² C bi-directional serial data.	Schmitt trigger TTL input buffer
27	SCL	DI	I ² C serial clock input.	Schmitt trigger TTL input buffer
			B I	Schmitt trigger TTL input buffer,
28	PD	DI	Power down, low active. Place the amplifier	internal pull Low with a 100Kohm
		in Shutdown.		resistor.
				Schmitt trigger TTL input buffer,
29	RESET	DI	Reset, low active.	internal pull High with a 330Kohm
	-			resistor.
30	NC	-	Not connected.	
			Parallel BTL mode switch, high for parallel	Schmitt trigger TTL input buffer,
31	PBTL	DI	BTL output.	internal pull Low with a 100Kohm
			· 1 · ·	

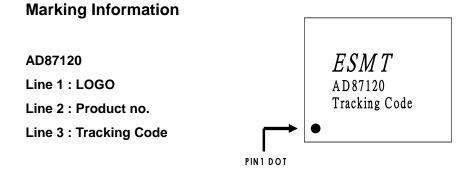
Publication Date: Nov. 2021 Revision: 0.7 3/103


				resistor.
				Schmitt trigger TTL input buffer,
32	CLK_OUT	DO	Clock output pin.	internal pull Low with a 100Kohm
				resistor.
	0) (5.5	-	5V Regulator voltage output, this pin must	
33	GVDD	Р	not be used to drive external devices.	
34	AGND	Р	Analog Ground.	
35	VDDR	Р	Right channel supply.	
36	NC	-	Not connected.	
37	RA	0	Right channel output A.	
			Bootstrap capacitor connect pin for right	
20	DCT DA	6	channel output A, it is used to create a	
38	BST_RA	Р	power supply for the high-side gate drive for	
			right channel output A.	
39	GNDR	Р	Right channel ground.	
40	RB	0	Right channel output B.	
41	NC	-	Not connected.	
			Bootstrap capacitor connect pin for right	
40	DCT DD	Б	channel output B, it is used to create a	
42	BST_RB	Р	power supply for the high-side gate drive for	
			right channel output B.	
			Bootstrap capacitor connect pin for left	
43	DOT LD	Р	channel output B, it is used to create a	
43	BST_LB	Г	power supply for the high-side gate drive for	
			left channel output B.	
44	NC	-	Not connected.	
45	LB	0	Left channel output B.	
46	GNDL	Р	Left channel ground.	
			Bootstrap capacitor connect pin for left	
47	BST_LA	Р	channel output A, it is used to create a	
41	DSI_LA	۲	power supply for the high-side gate drive for	
			left channel output A.	
48	LA	0	Left channel output A.	
	Thermal land		Connect to the system ground.	

Note: Al=Analog input; AO=Analog output; Al/O = Analog Bi-directional (input and output); DI=Digital Input; DO=Digital Output; DI/O = Digital Bi-directional (input and output); P=Power or Ground; O: PWM output

Publication Date: Nov. 2021 Revision: 0.7 4/103

Functional Block Diagram


Ordering Information

Product ID	Package	Packing / MPQ	Comments	
AD87120-LG48NRY	E-LQFP 48L	250 Units / Tray	Croon	
AD67120-LG46NR1	(7mmx7mm)	2.5K Units / Box (10 Tray)	Green	
AD87120-LG48NRR	E-LQFP 48L	2k Units / Reel	Croon	
AD6/120-LG46NRR	(7mmx7mm)	1 reel / Small box	Green	

Available Package

Package Type	Device No.	θ _{JA} (°C/W)	θ _{JT} (°C/W)	$\Psi_{JT}(^{\circ}C/W)$	Exposed Thermal Pad
E-LQFP 48L	AD87120	22.9	34.9	1.64	Yes (Note 1)

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- Note 1.2: θ_{JA} , the junction-to-ambient thermal resistance is simulated on a room temperature (T_A =25 $^{\circ}$ C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.
- Note 1.3: θ_{JT} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.
- Note 1.4: Ψ_{JT} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2.

Absolute Maximum Ratings (AMR)

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.

Symbol	Р	arameter	Min	Max	Units
DVDD	Supply f	or Digital Circuit	-0.3	3.6	V
DVDDIO	Supply for	Digital I/O Circuit	-0.3	3.6	V
HVDD	Supply	for Line Driver	-0.3	3.6	V
PVDD	VDDL/R Sup	oply for Driver Stage	-0.3	30	V
	Output Pin (LA,	LB, RA and RB) to GND		32	V
Vi	Inp	-0.3	3.6	V	
T _{stg}	Storage	e Temperature	-65	150	°C
T _J	Junction Ope	erating Temperature	-40	150	°C
ESD	Huma	n Body Model		±2K	V
E2D	Charge	d Device Model		±500	V
		BTL: 8V≦PVDD ≦16V	3.2		Ω
R_L	Minimum Load	BTL: 16V <pvdd td="" ≤24v<=""><td>4.8</td><td></td><td>Ω</td></pvdd>	4.8		Ω
ΝĹ	Resistance	PBTL: 8V≦PVDD ≤16V	1.6		Ω
		PBTL: 16V <pvdd td="" ≤24v<=""><td>2.4</td><td></td><td>Ω</td></pvdd>	2.4		Ω

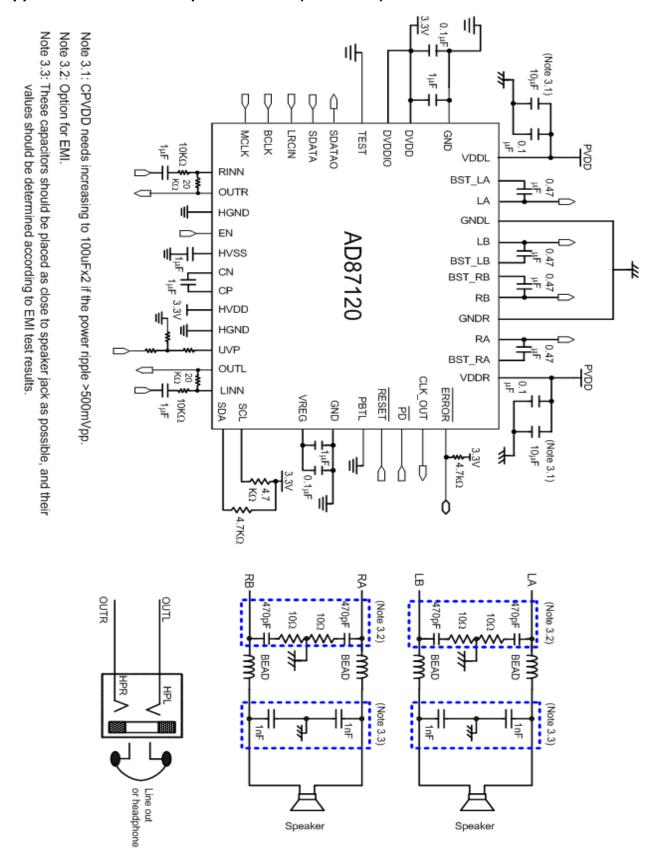
Recommended Operating Conditions

Symbol	Parameter	Units			
DVDD	Supply for Digital Circuit	Supply for Digital Circuit 3.0~3.6			
DVDDIO	Supply for Digital I/O Circuit for 1.8V	1.65~1.95	V		
DVDDIO	Supply for Digital I/O Circuit for 3.3V	3.0~3.6	V		
HVDD	Supply for Line Driver	3.0~3.6	V		
PVDD	VDDL/R Supply for Driver Stage	8~26	V		
T _J	Junction Operating Temperature	-40~125	°C		
T _A	Ambient Operating Temperature	-40~85	°C		

Publication Date: Nov. 2021 Revision: 0.7 7/103

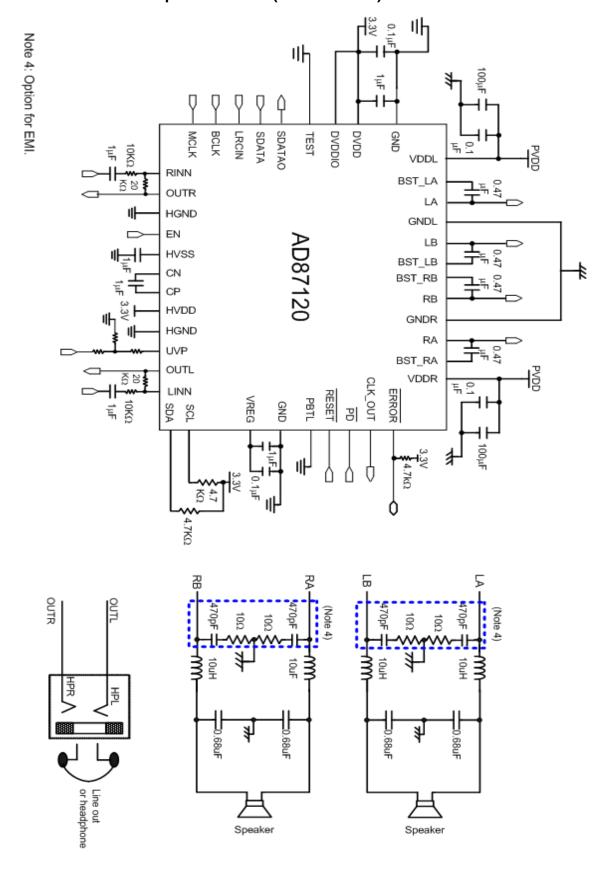
General Electrical Characteristics

Condition: T_A=25 °C (unless otherwise specified).

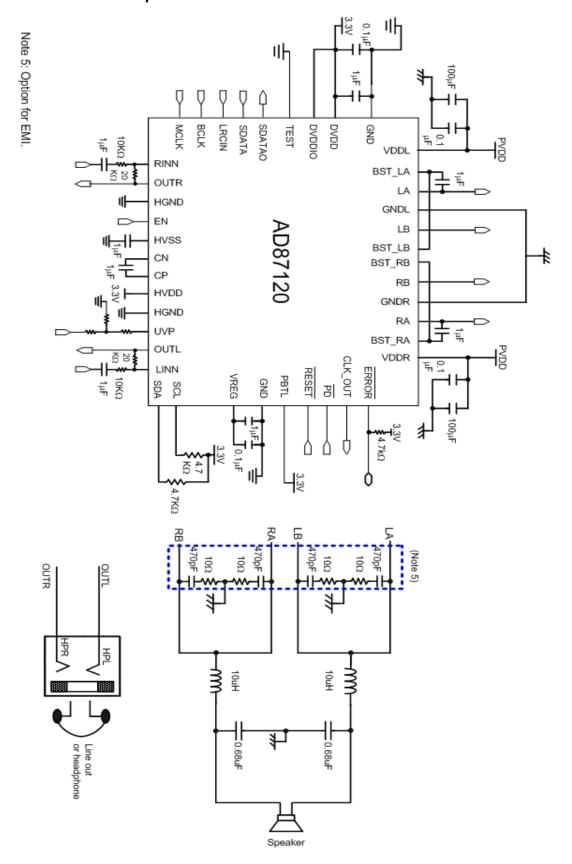

Symbol	Parameter	Condition	Min	Тур	Max	Units
I (U\/)	Quiescent current for PVDD	PVDD=24V		17	32	m ^
I _Q (HV)	(PWM 50%/50% duty after de-mute)	F V D D = 24 V		17	32	mA
I _{PD} (HV)	PVDD Supply Current during Shutdown	PVDD=24V		20	100	uA
$I_Q(LV)$	Quiescent current for DVDD (Un-mute)	DVDD=3.3V		28		mA
I _{PD} (LV)	DVDD Supply Current during Shutdown	DVDD=3.3V		1		mA
I _{Q(HVDD)}	Quiescent current for Line Driver	HVDD=3.3V		7	15	mA
I _{PD(HVDD)}	Shutdown current for Line Driver	HVDD=3.3V			5	uA
_	Junction Temperature for Driver Shutdown			165		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			35		°C
UV _{DVDDH}	DVDD Under Voltage Release			2.87		V
UV _{DVDDL}	DVDD Under Voltage Active			2.66		V
OV _H	VDDL/R Over Voltage Active			29.2		V
OVL	VDDL/R Over Voltage Release			28.5		V
R _{DS(on)}	Static Drain-to-Source On-state Resistor, NMOS	PVDD=24V, Id=500mA		150		mΩ
	L(R) Channel Over-Current Protection (Note 2) Mono Over-Current Protection (Note 2)	PVDD=24V		8		Α
,		PVDD=12V		8		Α
I _{SC}		PVDD=24V		15		Α
		PVDD=12V		15		Α
V	High-Level Input Voltage for DVDD/DVDDIO/HVDD	3.3V	2.0			V
V _{IH}	High-Level Input Voltage for DVDDIO	1.8V	1.26			V
V	Low-Level Input Voltage for DVDD/DVDDIO/HVDD	3.3V			0.8	V
V_{IL}	Low-Level Input Voltage for DVDDIO	1.8V			0.54	V
\/	High-Level Output Voltage for DVDD/DVDDIO/HVDD	3.3V	2.4			V
V _{OH}	High-Level Output Voltage for DVDDIO	1.8V	1.44			V
.,	Low-Level Output Voltage for DVDD/DVDDIO/HVDD	3.3V			0.4	V
V_{OL}	Low-Level Output Voltage for DVDDIO	1.8V			0.4	V
Cı	Input Capacitance			6.4		pF
		FSW=00		300		
fрwм	PWM Frequency	FSW=01		600		KHz
		FSW=10		800		

Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Publication Date: Nov. 2021 Revision: 0.7 8/103


Application Circuit Example for Stereo (Filter-less)

Publication Date: Nov. 2021 Revision: 0.7 9/103


Application Circuit Example for Stereo (With LC filter)

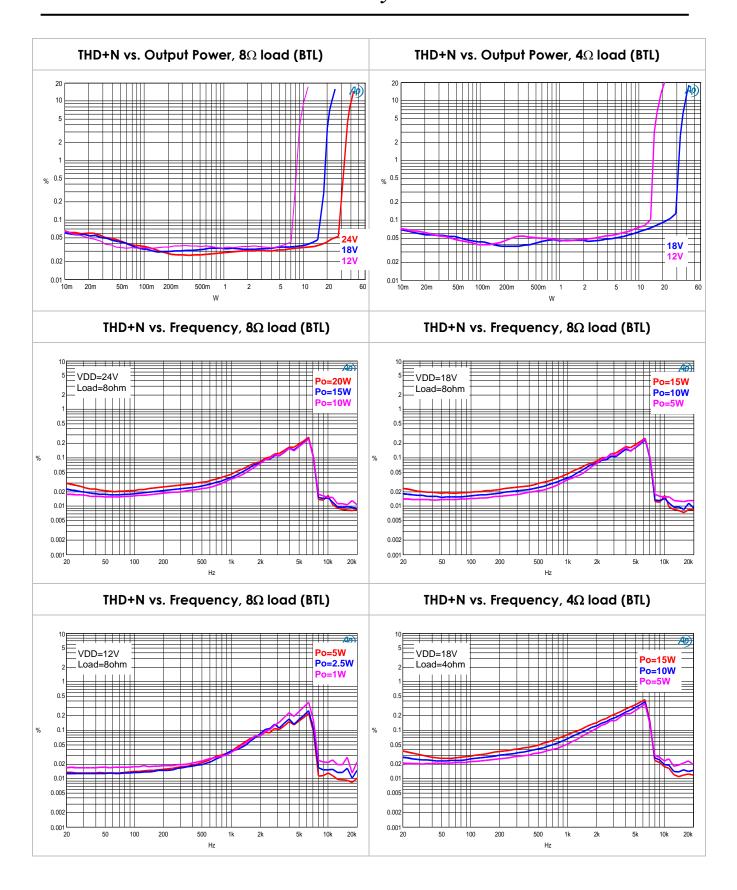
Publication Date: Nov. 2021 Revision: 0.7 10/103

Application Circuit Example for Mono

Electrical Characteristics and Specifications for Loudspeaker

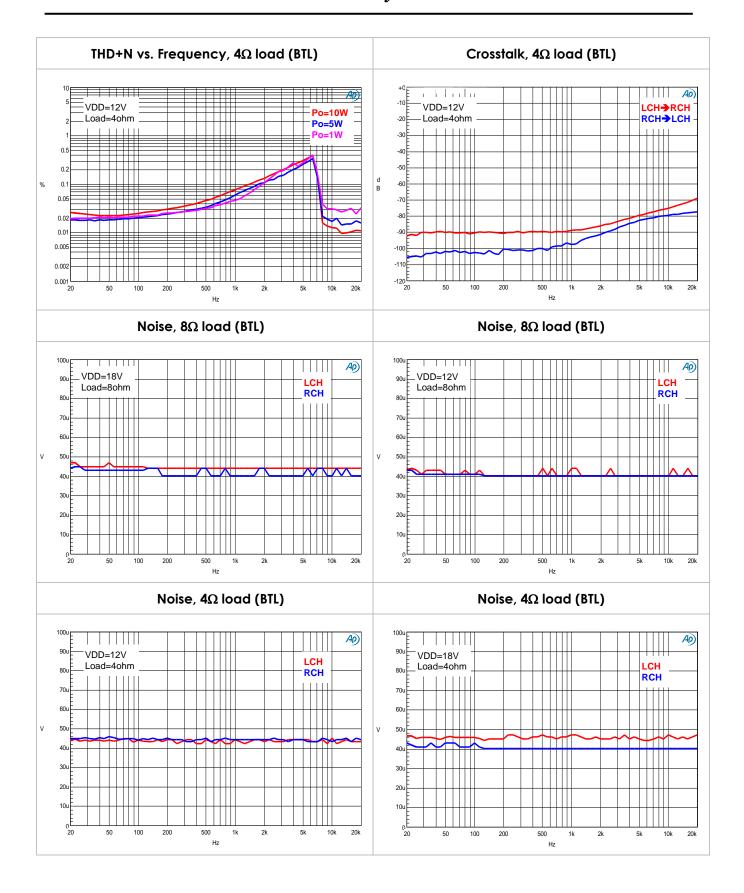
BTL (Bridge-Tied-Load) output for Stereo

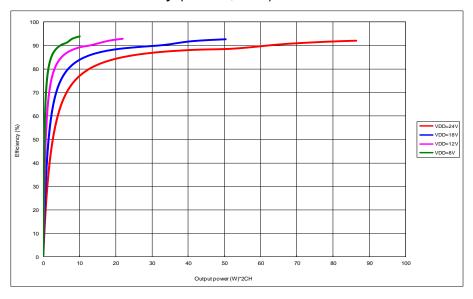
Condition: $T_A=25^{\circ}C$, DVDD=3.3V, VDDL=VDDR=24V, $F_S=48$ kHz, Load= 8Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=25m\Omega$, C=680nF); Input is 1kHz sinewave. Volume is 0dB, $f_{PWM}=300$ kHz unless otherwise specified.

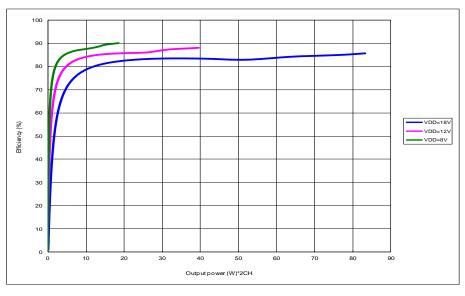

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
В	RMS Output Power (THD+N=0.05%)				25		W
P _O	RMS Output Power (THD+N=0.04%)				15		W
(Note 7)	RMS Output Power (THD+N=0.03%)				10		W
	Total Harmonia Dietortion - Naisa	P _O =1W			0.03		%
	Total Harmonic Distortion + Noise	P _O =12.5W			0.035		%
THD+N	Total Harmonic Distortion + Noise	P _O =1W			0.03		%
	(f_{PWM} =800kHz, L=4.7 μ H + C=680nF filter)	P ₀ =12.5W			0.04		%
SNR	Signal to Noise Ratio (Note 6)	Maximum power at THD < 1% @1kHz			107		dB
DR	Dynamic Range (Note 6)		-60dB		108		dB
		20Hz to 20kHz			65		
Vn	Output Noise (Note 6)	20Hz to 20kHz @12V			50		uV
PSRR	Power Supply Rejection Ratio	VRIPPLE=200mVpp noise injected at 1kH9			-70		dB
	Channel Separation	P _O =1W @1kHz			-95		dB

Note 6: Measured with A-weighting filter.

Note 7: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted to meet system thermal requirement.

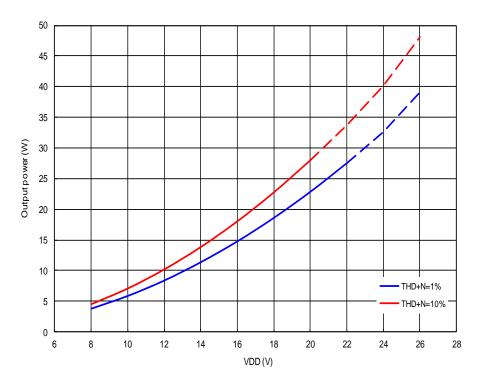

Publication Date: Nov. 2021 Revision: 0.7 12/103


Publication Date: Nov. 2021 Revision: 0.7 13/103

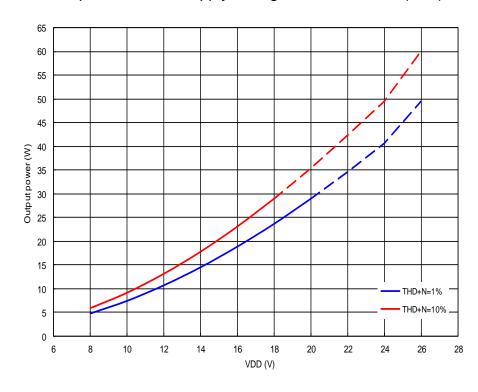


Publication Date: Nov. 2021 Revision: 0.7 14/103

Efficiency (Stereo, BTL) @ 80hm Load

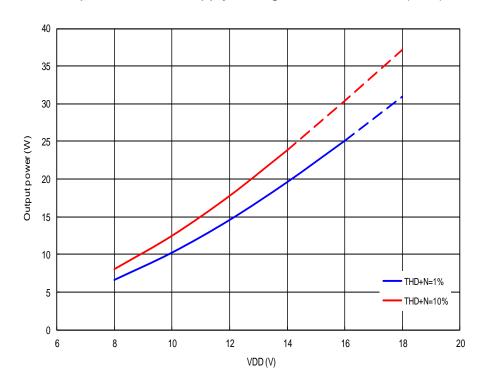


Efficiency (Stereo, BTL) @ 4ohm Load


Publication Date: Nov. 2021 Revision: 0.7 15/103

Output Power vs. Supply Voltage @8ohm Stereo (BTL)

Note: Dashed Line represent thermally limited regions.


Output Power vs. Supply Voltage @6ohm Stereo (BTL)

Note: Dashed Line represent thermally limited regions.

ESMT

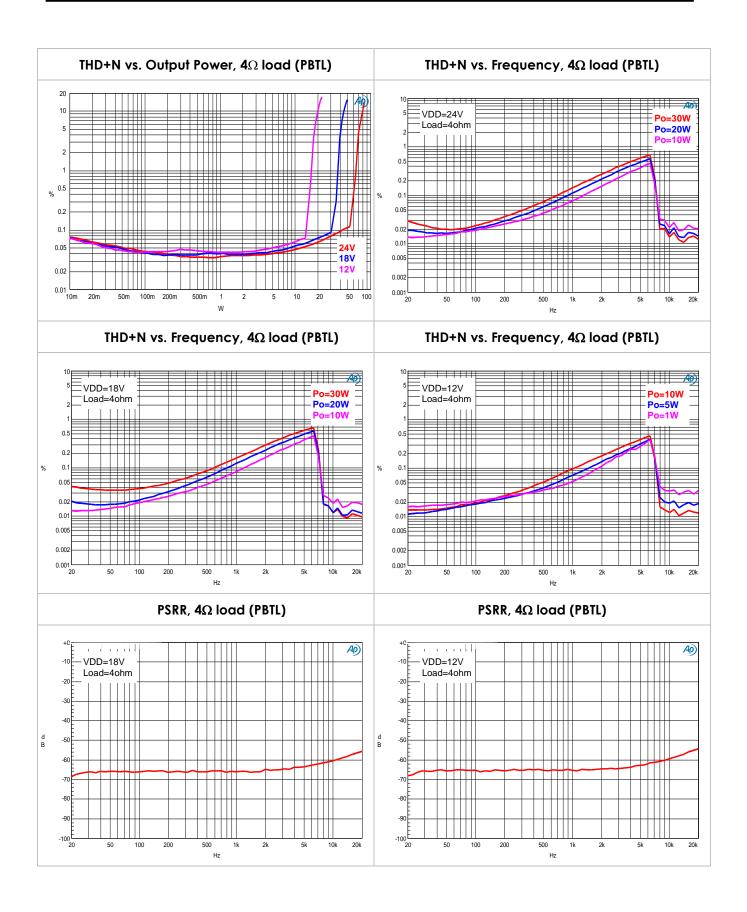
Output Power vs. Supply Voltage @4ohm Stereo (BTL)

Note: Dashed Line represent thermally limited regions.

Electrical Characteristics and Specifications for Loudspeaker (cont.)

PBTL (Parallel-Bridge-Tied-Load) output for Mono

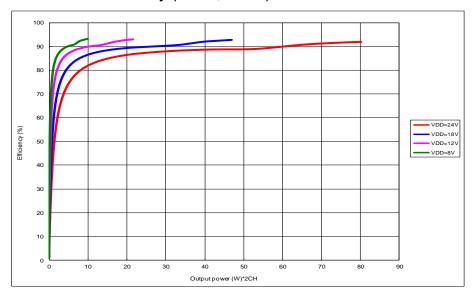
Condition: $T_A=25^{\circ}C$, DVDD= 3.3V, VDDL=VDDR=24V, $F_S=48kHz$, Load= 4Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=25m\Omega$, C=680nF); Input is 1kHz sinewave. Volume is 0dB, $f_{PWM}=300kHz$ unless otherwise specified.

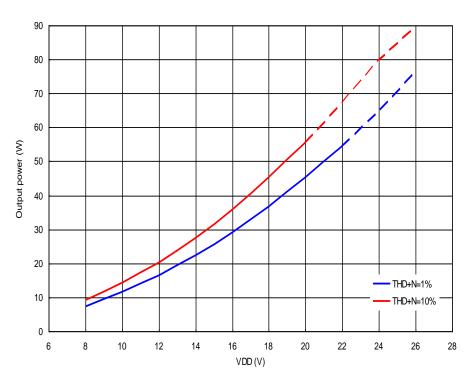

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
0	RMS Output Power (THD+N=0.14%)				50		W
P _O	RMS Output Power (THD+N=0.085%)				30		W
(Note 7)	RMS Output Power (THD+N=0.07%)				20		W
	Total Harmania Dietartian - Naisa	P _O =1W			0.04		%
	Total Harmonic Distortion + Noise	P _O =25W			0.075		%
THD+N	armonic Distortion + Noise	P _O =1W			0.04		%
	(f_{PWM} =800kHz, L=4.7 μ H + C=680nF filter)	P _o =25W			0.09		%
SNR	Signal to Noise Ratio (Note 6)	Maximum power at THD < 1% @1kHz			106		dB
DR	Dynamic Range (Note 6)		-60dB		104		dB
		20Hz to 20kHz			75		
Vn	Output Noise (Note 6)	20Hz to 20kHz @12V			50		uV

Note 6: Measured with A-weighting filter.

Note 7: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted to meet system thermal requirement.

Publication Date: Nov. 2021 Revision: 0.7 18/103



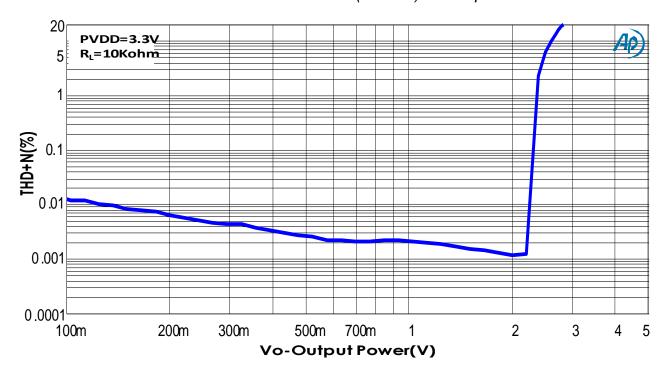

Publication Date: Nov. 2021 Revision: 0.7 19/103

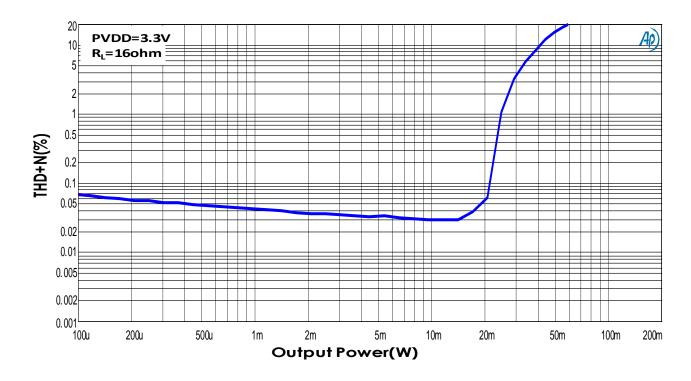
Efficiency (Mono, PBTL) @ 40hm Load

Output Power vs. Supply Voltage @4ohm Mono (PBTL)

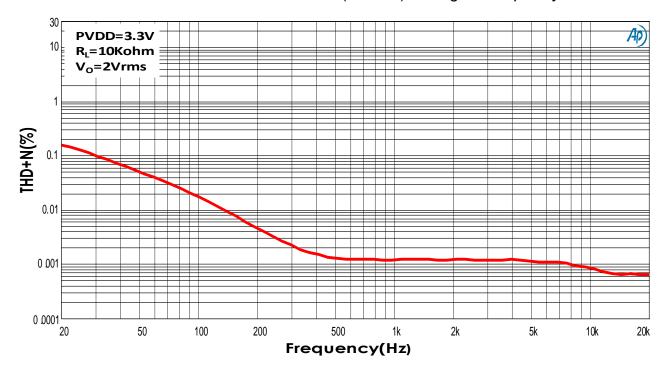
Note: Dashed Line represent thermally limited regions.

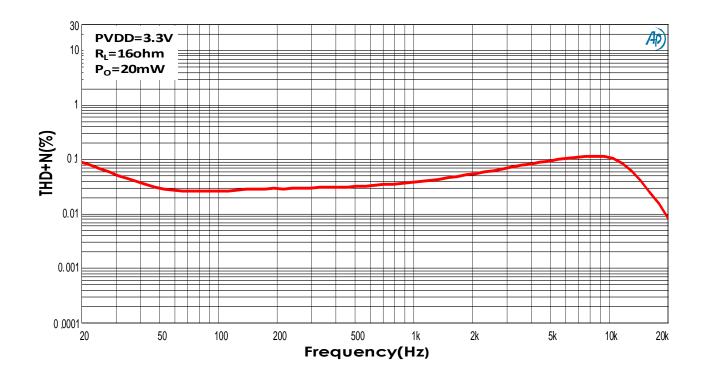
Electrical Characteristics and Specifications for Line Driver

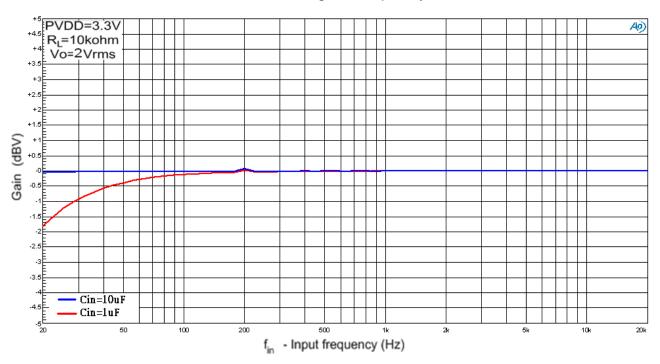

• Line driver

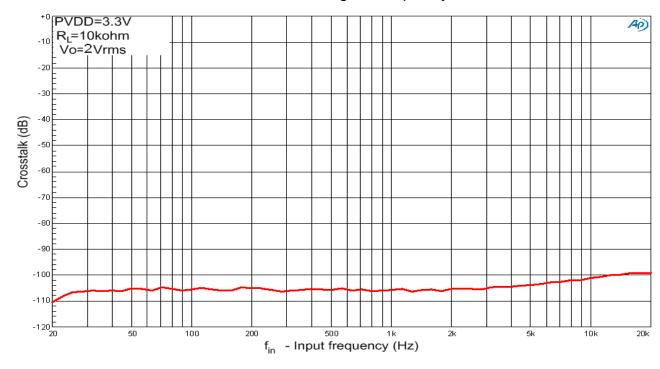

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vo	Output Voltage (Outputs In Phase)	THD+N=1%, V_{DD} =3.3V, f_{IN} =1kHz	2.0	2.3		Vrms
THD+N	Total Harmonic Distortion Plus Noise	V _O =2Vrms, f _{IN} =1kHz		0.004		%
Crosstalk	Channel Separation	V _O =2Vrms, f _{IN} =1kHz		-105		dB
V _N	Output Noise	R _I =10k, R _F =10k		7	15	μVrms
V _{SR}	Slew Rate			8		V/µs
SNR	Signal to Noise Ratio	V_0 =2Vrms, R_I =10k, R_F =10k, A-weighted	90	107		dB
G_{BW}	Unit-Gain Bandwidth			8		MHz
A _{VO}	Open-Loop Gain		80			dB
V _{os}	Output Offset Voltage	HVDD=3.0V to 3.6V, Input Grounded	-1		1	mV
PSRR	Power Supply Rejection	HVDD=3.0V to 3.6V,		-76	-60	dB
PORK	Ratio	V _{rr} =200mVrms, f _{IN} =1kHz				
R _I	Input Resistor Range		1	10	47	kΩ
R _F	Feedback Resistor Range		4.7	20	100	kΩ
f _{CP}	Charge-Pump Frequency		400	500	600	kHz
	Maximum capacitive Load			220		pF
V _{UVP}	External Under Voltage Detection		1.2	1.25	1.35	V
I _{HYS}	External Under Voltage Detection Hysteresis Current			5		μΑ
T _{start-up}	Start-up Time			0.5		ms

Publication Date: Nov. 2021 Revision: 0.7 21/103

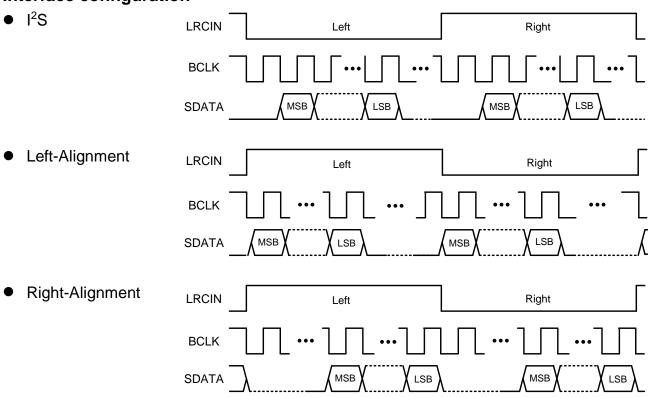

Total Harmonic Distortion + Noise (THD+N) vs. Output Power



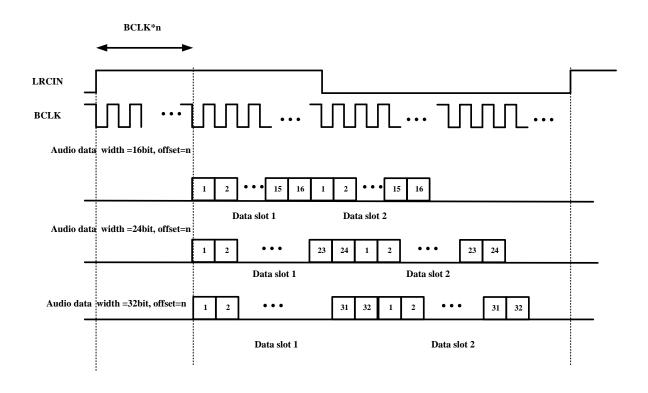

Total Harmonic Distortion + Noise (THD+N) vs. Signal Frequency



Gain vs. Signal Frequency



Cross-talk vs. Signal Frequency



Interface configuration

TDM

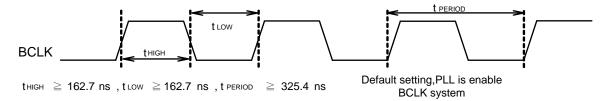
Elite Semiconductor Microelectronics Technology Inc.

25/103

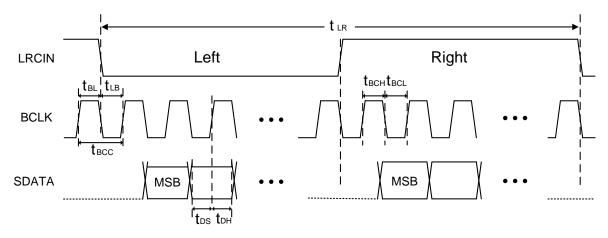
AD87120 device Audio Data Formats, Bit Depths, Clock Rates, and channel numbers (BCLK system)

Format	Data Bits	Maximum LRCIN Frequency (KHz)	BCLK Rate (FS)	Channel numbers
I ² S/LJ/RJ	32	48, 96	64x	2
	32	8	256x	8
	22.16	16	128x and 256x for 32 data bits	4, 8 channels for 32 data bits
TDM	32, 16	16	128x for 16 data bits	8 channel for 16 data bits
	32, 16	48, 96	64x, 128x, 256x for 32 data bits	2,4,8 channels for 32 data bits
			128x, 256x for 16 data bits	8,16 channels for 16 data bits

AD87120 device Audio Data Formats, Bit Depths, Clock Rates, and channel numbers (MCLK system)

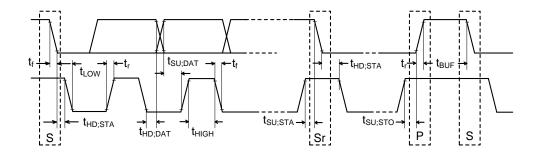

Format	Data Bits	Maximum LRCIN Frequency (KHz)	MCLK Rate (FS)	BCLK Rate (FS)	Channel numbers
		8	256~4096x		
		16	128~2048x 64~1024x for		
I ² S/LJ/RJ	32, 24,		48K FS	32x, 48x, 64x	2
. 5/25/115	20, 16	48, 96	10.11.0	0 <u>=</u> 24, 1024, 0 124	_
		,	64~512x for		
			96K FS		
		8	256~4096x	32x, 64x, 128x,	
		16	128~2048x	256x for 32 data	
				bits	
		48	64~1024x	244 404 064	
				24x, 48x, 96x, 192x for 24 data	1,2,4,8 channels for
				bits	32/24/20 data bits
TDM	32, 24,				02/2 1/20 data bito
	20, 16			20x, 40x, 80x,	1,2,4,8,16 channels
					for 16 data bits
		96 64~512x	bits		
				40v 20v C4v	
				16x, 32x, 64x, 128x, 256x for 16	
				data bits	
				data bits	

Publication Date: Nov. 2021 Revision: 0.7 26/103


Elite Semiconductor Microelectronics Technology Inc.

System Clock Timing

• Timing Relationship (Using I²S format as an example)



Symbol	Parameter	Min	Тур	Max	Units
t_{LR}	LRCIN Period (1/F _S)	10.4		31.25	μS
t _{BL}	BCLK Rising Edge to LRCIN Edge	12.5			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	12.5			ns
	BCLK Period (Min. is for 96k with				
t_{BCC}	1/256Fs, Max. is for 32k with 1/64	40.69		488.3	ns
	Fs)				
t _{BCH}	BCLK Pulse Width High	20.35		244	ns
t _{BCL}	BCLK Pulse Width Low	20.35		244	ns
t _{DS}	SDATA Set-Up Time	12.5			ns
t _{DH}	SDATA Hold Time	12.5			ns

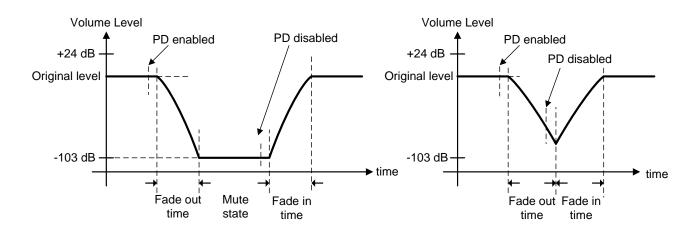
Publication Date: Nov. 2021 Revision: 0.7 27/103

• I²C Timing

Davis and an	Coursels al	Standard	d Mode	Fast Mo	de	l lait
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μS
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μS
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μS
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μS
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μS
Setup time for I ² C bus data	t _{SU;DAT}	250		100		ns
Rise time of both SDA and SCL signals	t _r		1000		300	ns
Fall time of both SDA and SCL signals	t _f		300		300	ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μS
Bus free time between STOP and the next		4.7		1.3		
START condition	t _{BUF}	4.7		1.3		μS
Capacitive load for each bus line	Cb		400		400	pF

Publication Date: Nov. 2021 Revision: 0.7 28/103

Operation Description


The default volume of AD87120 is muted. AD87120 will be activated while the de-mute command via I²C is programmed.

Internal PLL

AD87120 has a built-in PLL internally, the BCLK/FS or MCLK/FS ratio, which is selected by I²C control interface. The clock inputted into the BCLK or MCLK pin becomes the frequency of multiple edge evaluation in chip internally.

Power down control

AD87120 has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

$$(10^{\frac{t \arg et(dB)}{20}} - 10^{\frac{original(dB)}{20}})x128x(1/96K)$$

(Note: Address 0x1C B[2]=0)

The volume level will be decreased to $-\infty dB$ in several LRCIN cycles. Once the fade-out procedure is finished, AD87120 will turn off the power stages, clock signals (for digital circuits) and current (for analog circuits). After PD/ pin is pulled low, AD87120 requires T_{fade} to finish the forementioned work before entering power down state. User can not program AD87120 during power down state. Also, all settings in the registers will remain intact unless DVDD is removed.

If the PD signal is removed during the fade-out procedure (above, right figure), AD87120 will still execute the fade-in procedure. In addition, AD87120 will establish the analog circuits' bias current and send the clock signals to digital circuits. Afterwards, AD87120 will return to its normal status.

Publication Date: Nov. 2021 Revision: 0.7 29/103

Self-protection circuits

AD87120 has built-in protection circuits including thermal, short-circuit, under-voltage detection, and over voltage circuits.

- (i) When the internal junction temperature is higher than 165℃, power stages will be turned off and AD87120 will return to normal operation once the temperature drops to 130℃. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 9A for stereo configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once short-circuit condition is removed, AD87120 will exit ERROR state when one of the following conditions is met: (1) \overline{PD} pin is pulled low, (2) Master mute is enabled through the I²C interface.

- (iii) Once the DVDD voltage is lower than 2.66V, AD87120 will turn off its loudspeaker power stages. When DVDD becomes higher than 2.87V, AD87120 will return to normal operation. DVDD under-voltage detection level is adjustable via register 0x00, B[1], LV_UVSEL register.
- (iv) Once the PVDD voltage is higher than 29.2V, AD87120 will turn off its loudspeaker power stages. When PVDD becomes lower than 28.5V, AD87120 will return to normal operation.
- (v) Once the PVDD voltage is lower than 4.0V, AD87120 will turn off its loudspeaker power stages. When PVDD becomes higher than 4.2V, AD87120 will recovery it. PVDD under-voltage detection level is adjustable via register 0x1B, B[2:0], HV_UVSEL register.

Clock detection

AD87120 has clock error handling that uses the built-in oscillator clock to quickly detect changes / errors. Once the system detects the clock change / error, it will turn off the output and then force the oscillator clock as the reference clock of PLL. If the clocks are stable, the system will detect automatically and the system will revert to normal operation. During this process, AD87120 will fade in to the current volume setting.

Anti-pop design

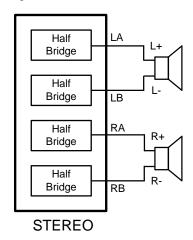
AD87120 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

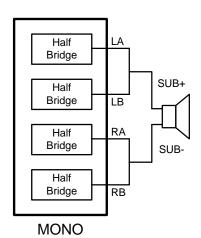
3D surround sound

While Fs=32kHz/44.1kHz/48kHz setting, AD87120 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals. Fs=64kHz/88.2kHz/96kHz setting, surround sound function is not supporting due the DSP processing bandwidth limitation.

I²C chip select

2 address mode (register 0X1C B[5], DEV_NUM=0), ERROR pin is an input pin during power. It can be pulled high (15-k Ω pull up) or low (15-k Ω pull down) for I2C address selection. Low indicates an I²C address of 0x30, and high an address of 0x31.

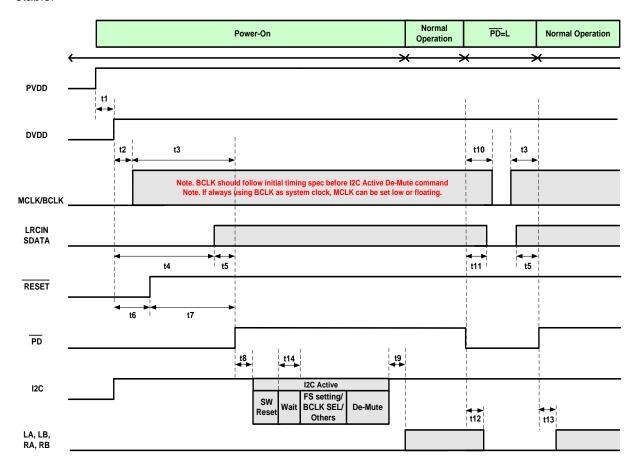

4 address mode (register 0X1C B[5], DEV_NUM=1), AD87120 slave address can be selected by ERROR in the following table.


ERROR pin configuration	MSBs			Us	ser Defi	ne	LSB	
4.7k Ω to DVDD	0	1	1	0	0	0	0	R/W
15k Ω to DVDD	0	1	1	0	0	0	1	R/W
47kΩ to DVDD	0	1	1	0	1	0	0	R/W
120kΩ to DVDD	0	1	1	0	1	0	1	R/W

Output configuration

AD87120 can be configured to mono (PBTL) via I²C control, set register MONO_EN=1 (register 0X1A, B[6]) and MONO_KEY=3006(HEX) (register 0X5B & 0X5C) to entry PBTL configuration.

Configuration figures:



Publication Date: Nov. 2021 Revision: 0.7 31/103

Power on sequence

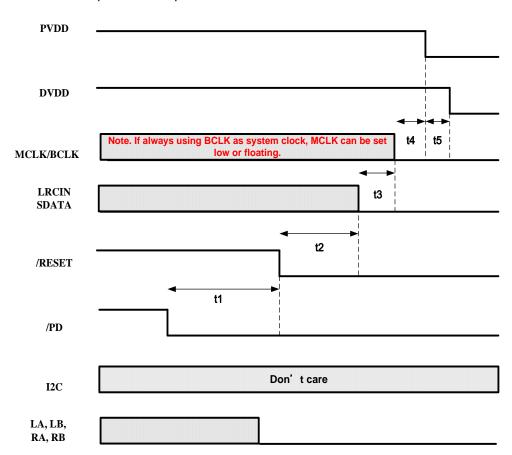
Hereunder is AD87120's power on sequence. Give a de-mute command via I²C when the whole system is stable.

Note:

Please be noted below sequence shall be follow up with "I2C Active" processing,

(1) Set S/W reset bit = $0 \rightarrow (2)$ Delay 5ms $\rightarrow (3)$ Set S/W reset bit = $1 \rightarrow (4)$ Delay 20ms $\rightarrow (5)$ Set all channels = mute (setting address 0X02 = 0X7F) $\rightarrow (6)$ Set sampling frequency and other registers (except setting address 0X02) $\rightarrow (7)$ Set all channels = de-mute (setting address 0X02 = 0X00)

Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		20	-	msec

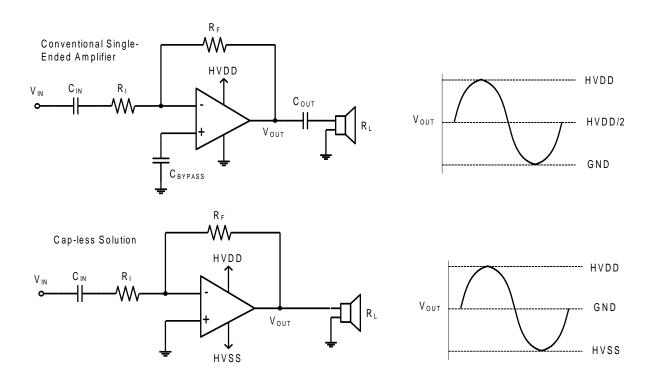

Publication Date: Nov. 2021 Revision: 0.7 32/103

t9	-	0.1	msec
t10	25	-	msec
t11	25	-	msec
t12		22(FADE_SPEED=0)	maaa
112	-	176(FADE_SPEED=1)	msec
t13	-	20	msec
t14	20		msec

Power off sequence

Hereunder is AD87120's power off sequence.

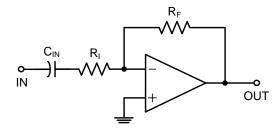
Symbol	Condition	Min	Max	Units
t1		35(FADE_SPEED=0)	_	msec
		280(FADE_SPEED=1)		111000
t2		0.1	-	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec


Publication Date: Nov. 2021 Revision: 0.7 33/103

Line Driver Amplifiers Operation

A conventional inverting line-driver amplifier always requires an output dc-blocking capacitor and a bypass capacitor. DC blocking capacitors are large in size and cost a lot. It also restricts the output low frequency response. POP will occur if the charge and discharge processes on output capacitors are not carefully take cared. Besides, it needs to wait for a long time to charge V_{OUT} from 0V to HVDD/2.

For a cap-less line driver, a negative supply voltage (-HVDD) is produced by the integrated charge-pump, and feeds to line driver's negative supply instead of ground. The positive input can directly connect to ground without a C_{BYPASS} , and V_{OUT} is biased at ground which can eliminate the output dc-blocking capacitors. The output voltage swing is doubled compared to conventional amplifiers.



Gain Setting Resistors (R_I and R_F) in Line Driver

The line driver's gain is determined by R_I and R_F . The configuration of the amplifier is inverting type, The gain equation is listed as follows:

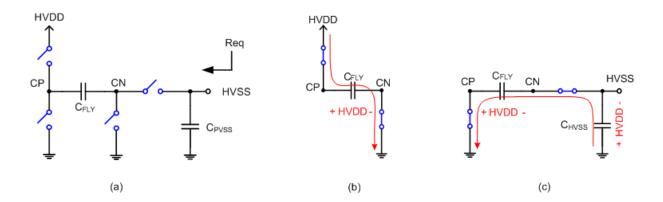
Inverting configuration: $A_V = -\frac{R_F}{R_I}$

The values of R_I and R_F must be chosen with consideration of stability, frequency response and noise. The recommended value of R_I is in the range from $1k\Omega$ to $47k\Omega$, and R_F is from $4.7k\Omega$ to $100k\Omega$ for. The gain is in the range from -1V/V to -10V/V for inverting configuration. The following table show the recommended resistor values for different configurations.

D (I/O)	D (kO)	Inverting Input
$R_1(k\Omega)$	$R_F(k\Omega)$	Gain (V/V)
22	22	-1
15	30	-2
33	68	-2.1
10	100	-10

Input Blocking Capacitors (C_{IN}) for Line Driver

An input blocking capacitor is required to block the dc voltage of the audio source and allows the input to bias at a proper dc level for optimum operation. The input capacitor and input resistor (R_I) form a high-pass filter with the corner frequency determined as following equation:

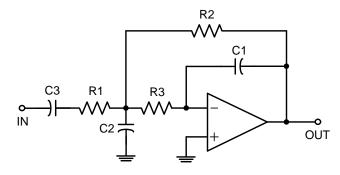

$$f_C = \frac{1}{2\pi R_I C_{IN}}$$

Charge-Pump Operation for Line Driver

The charge-pump is used to generate a negative supply voltage to supply to line-driver. It needs two external capacitors, C_{FLY} and C_{HVSS} , for normal operation, see figure (a). The operation can be analyzed with two phase. In phase I, see figure (b), C_{FLY} is charged to HVDD, and in phase II, see figure (c), the charges on C_{FLY} are shared with C_{HVSS} , that makes HVSS a negative voltage. After an adequate clock cycles, HVSS will be equaled to -HVDD. Low ESR capacitors are recommended, and the typical value of C_{FLY} and C_{HVSS} is $1\mu F$. A smaller capacitance can be used, but the maximum output voltage may be reduced.

Publication Date: Nov. 2021 Revision: 0.7 35/103

Decoupling Capacitors in Line Driver


A low ESR power supply decoupling capacitor for HVDD is required for better performance. The capacitor should place as close to chip as possible, the value is typically $1\mu F$. For filtering low frequency noise signals, a $10\mu F$ or greater capacitor placed near the chip is recommended.

Second-Order Filter Configuration for Line Driver

Line Driver can be used like a standard OPAMP. Several filter topologies can be implemented by using line driver, both single-ended and differential input configuration. For inverting input configuration, the overall gain

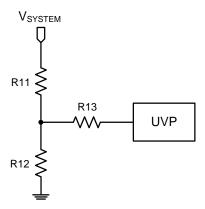
is
$$-\frac{R2}{R1}$$
, the high-pass filter's cutoff frequency is $\frac{1}{2\pi R1C3}$, the low-pass filter's cutoff frequency is

$$\frac{1}{2\pi\sqrt{R2R3C1C2}}$$
 , The following table show the detail component values.

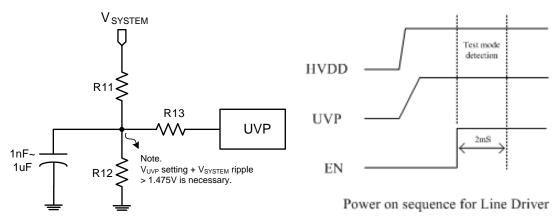
Gain (V/V)	High Pass (Hz)	Low Pass (kHz)	C1 (pF)	C2 (pF)	C3 (µF)	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)
-1	1.6	40	100	680	10	10	10	24
-1.5	1.3	40	68	680	15	8.2	12	30
-2	1.6	60	33	150	6.8	15	30	47
-2	1.6	30	47	470	6.8	15	30	43
-3.33	1.2	30	33	470	10	13	43	43
-10	1.5	30	22	1000	22	4.7	47	27

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Nov. 2021 Revision: 0.7 36/103


External Under-Voltage Protection for Line Driver

The external under-voltage protection is used to mute the line-driver before any input voltage change to generate a POP. The threshold of UVP pin is designed to 1.25V. By using a resistor divider, users can decide the UVP level and hysteresis level. The levels can be obtained by following equations:


$$V_{UVP} = (1.25V - 6\mu A \times R13) \times (R11 + R12) / R12$$

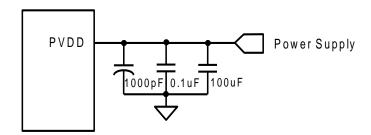
Hysteresis = $5\mu A \times R13 \times (R11 + R12) / R12$

With the condition R13 \gg (R11 // R12).

For example, to obtain V_{UVP} =2.67V, Hysteresis=0.37V, R11=1.5k Ω , R12=1k Ω , R13=30k Ω .

The UVP pin voltage ripple needs to take care during power up state within 2mS. It will trigger test mode in Line Driver when the ripple of the UVP pin lower than $1.25V\sim1.475V$ by $2\sim4$ times. To put a capacitor parallel with UVP pin can improve test mode mis-operating triggered while V_{STSTEM} is not stable during power up initially. V_{UVP} pin voltage threshold <1.475V should be prohibited during chip enable state.

UVP pin is pulled high internally, and therefore it can be floated to disable the external under-voltage protection feature.

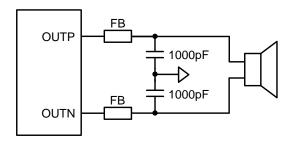

Publication Date: Nov. 2021 Revision: 0.7 37/103

Application information

Power supply decoupling capacitor (Cs)

Because of the power loss on the trace between the device and decoupling capacitor, the decoupling capacitor should be placed close to PVDD and PGND to reduce any parasitic resistor or inductor. A low ESR ceramic capacitor, typically 1000pF, is suggested for high frequency noise rejection. For mid-frequency noise filtering, place a capacitor typically 0.1uF or 1uF as close as possible to the device PVDD leads works best. For low frequency noise filtering, a 100uF or greater capacitor (tantalum or electrolytic type) is suggested.

Preliminary

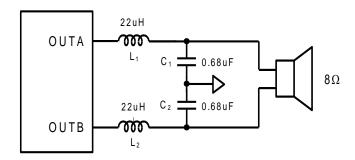

Recommended Power Supply Decoupling Capacitors.

Boot-strap Capacitor

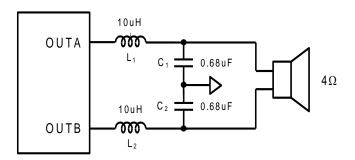
The output stage of the AD87120 uses a high-side NMOS driver. To generate the gate driver voltage for the high-side NMOS, a boot-strap capacitor for each output terminal acts as a floating power supply for the switching cycle. Use 0.47uF capacitors to connect the appropriate output pin to the boot-strap pin in stereo application and use 1uF boot-strap capacitor in mono application.

Ferrite Bead selection

If the traces from the AD87120 to speaker are short, the ferrite bead filters can reduce the high frequency emissions to meet FCC requirements. A ferrite bead that has very low impedance at low frequency and high impedance at high frequency (above 1MHz) is recommended. The impedance of the ferrite bead can be used along with a small capacitor with a value around 1000pF to reduce the frequency spectrum of the signal to an acceptable level.


Typical output filter for Filter-less application

Publication Date: Nov. 2021 Revision: 0.7 38/103



Output LC Filter

If the traces from the AD87120 to speaker are not short, it is recommended to add the output LC filter to eliminate the high frequency emissions. Below figure shows the typical output filter for 8Ω speaker with a cut-off frequency of 41KHz and 4Ω speaker with a cut-off frequency of 61KHz.

Typical LC output filter for 8Ω speaker

Typical LC output filter for 4Ω speaker

AD87120 switching frequency can be adjusted by 300KHz, 600KHz or 800KHz. Higher switching frequency means smaller inductor value needed.

With 800KHz switching frequency, designers can select 10uH+0.68uF or 4.7uH+0.68uF as the output filter, this will help to save the inductor size with the same rated current during the inductor selection.
 With 4.7uH+0.68uF filter, make sure PVDD voltage lower enough to avoid the large ripple current to trigger the OC threshold.

PVDD (V)	Speaker Load (Ω)	Recommended Minimum Inductance (uH) for LC filter design
≦18	8	4.7.11.0.00.5
≦12	4	4.7uH+0.68uF

- With 300KHz switching frequency, designers can select 22uH+0.68uF or 15uH+0.68uF or 10uH+0.68uF as the output filter, this will help to save power dissipation for some battery power supply application.

Publication Date: Nov. 2021 Revision: 0.7 39/103

Inductor Selection

The inductance vs. current profile for the inductor used in the output LC filter of a class-D amplifier can significantly impact the total harmonic distortion (THD) performance. The inductors always have decreasing inductance with increasing operating current. The inductance falls off severely, which induce inductor distortion is higher during lower-impedance loads. The effective inductance at the peak current is required to be at least 80% of the inductance value

In addition, it is required that the peak current is smaller than the OCP trigger threshold. Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation. The inductor's saturation current lsat > the amplifier's operating peak current is necessary. To operating safe considering, the inductor's saturation current >1.35 times of the peak current of maximum output power is suggested.

$$Inductor_Ipeak_selection \ge \sqrt{2 \times \frac{Maximum_output_power}{Rload}} \times 1.35$$

I²C-Bus Transfer Protocol

Introduction

AD87120 employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD87120 is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD87120 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity

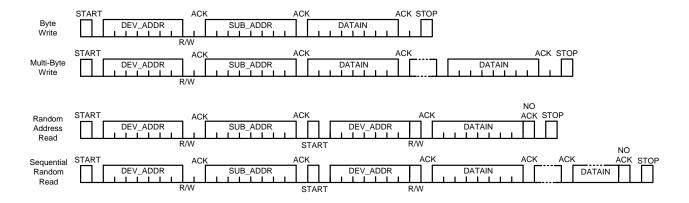
The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD87120 samples the SDA signal at the rising edge of SCL signal.

Device addressing

The master generates 7-bit address to recognize slave devices. If DEV_NUM=1 (register 0X1C, B[5]), AD87120 slave address can be selected by $\overline{\mathsf{ERROR}}$ in the following table.

I ² C slave	address	configuration	when	DEV	NUM is	1.

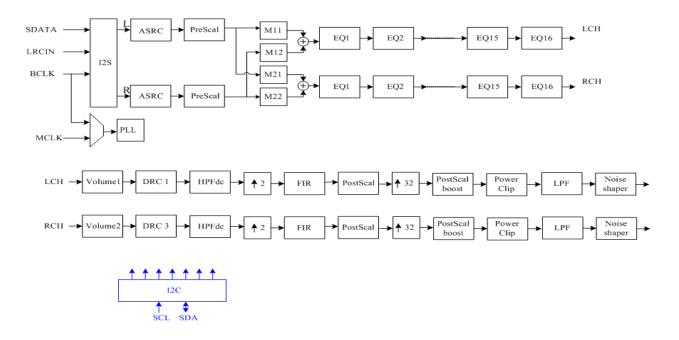
ERROR pin configuration	MSBs			User Define			LSB	
4.7k Ω to DVDD	0	1	1	0	0	0	0	R/W
15k Ω to DVDD	0	1	1	0	0	0	1	R/W
47kΩ to DVDD	0	1	1	0	1	0	0	R/W
120kΩ to DVDD	0	1	1	0	1	0	1	R/W

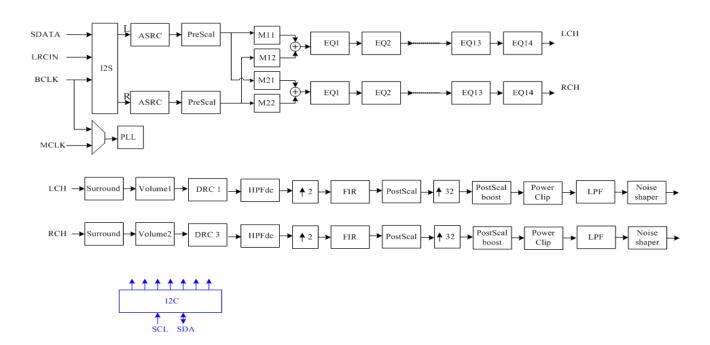

If DEV_NUM=0, AD87120 receives 7-bit address matched with 0110000 (0x30) or 0110001 (0x31) depend on ERROR pin state during power up (ERROR pin state before changing A_SEL_FAULT=1). AD87120 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD87120 internal sub-addresses.

Publication Date: Nov. 2021 Revision: 0.7 41/103

Data transferring

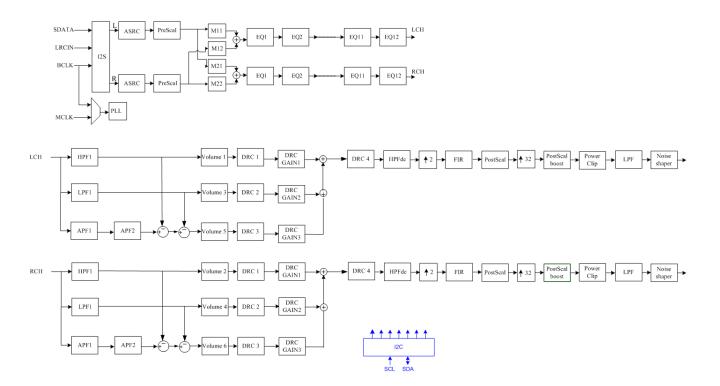
Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD87120 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.

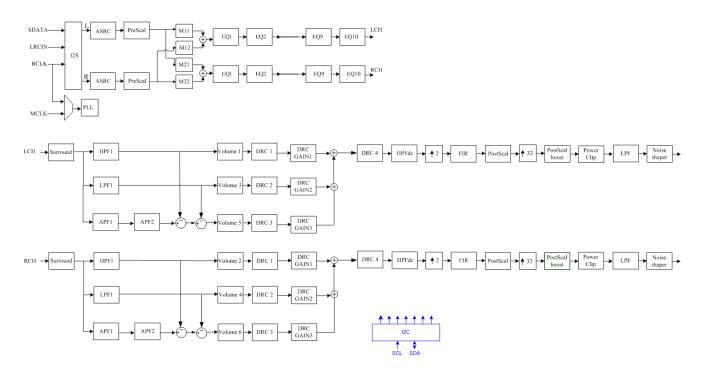

Publication Date: Nov. 2021 Revision: 0.7 42/103


Register Table

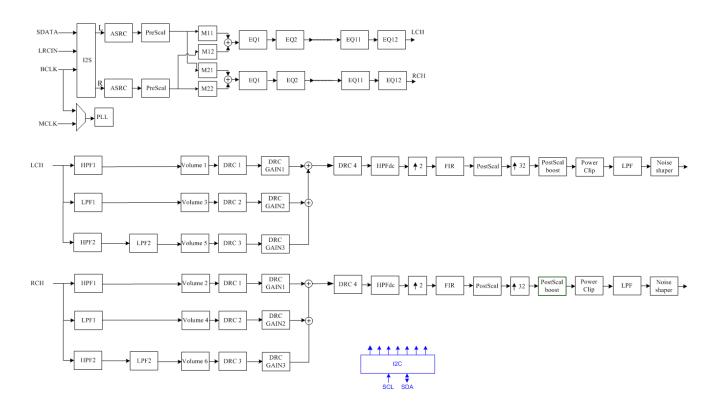
The AD87120's audio signal processing data flow is shown as the following figures. User can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

One band DRC without SRS

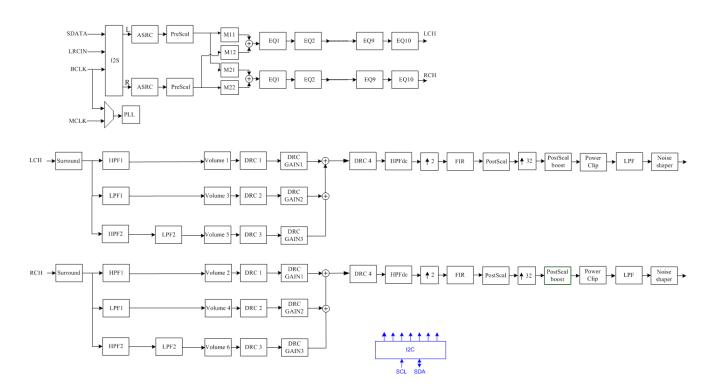

One band DRC with SRS


Publication Date: Nov. 2021 Revision: 0.7 43/103

Type 1, three band DRC without SRS



Type 1, three band DRC with SRS



Type 2, three band DRC without SRS

Type 2, three band DRC with SRS

DRC Band	Type	EQ Per Channel	SRS	Middle Band Form in 3 band DRC
1	V	16	No	X
	Χ	14 Yes		Х
	Type 1	12	No	Middle band = 1-HPF-LPF
3	Type 2	12	No	Middle band = HPF*LPF
3	Type 1	10	Yes	Middle band = 1-HPF-LPF
	Type 2	10	Yes	Middle band = HPF*LPF

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]	Reserved	PWML_X	PWMR_X	LV_UVSEL	LREXC
0X01	SCTL2	BCLK_SEL	FS[1]	FS[0]	FS8K	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLK_OUT	MUTE	CM1	CM2	СМЗ	CM4	CM5	CM6
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	C4VOL	C4V[7]	C4V[6]	C4V[5]	C4V[4]	C4V[3]	C4V[2]	C4V[1]	C4V[0]
0X08	C5VOL	C5V[7]	C5V[6]	C5V[5]	C5V[4]	C5V[3]	C5V[2]	C5V[1]	C5V[0]
0X09	C6VOL	C6V[7]	C6V[6]	C6V[5]	C6V[4]	C6V[3]	C6V[2]	C6V[1]	C6V[0]
0X0A	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X0B	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X0C	SCTL4	SRBP	BTE	DEQE	NGE	EQL	PSL	DSPB	HPB
0X0D	C1CFG	C1DRCGS[1]	C1DRCGS[0]	Rese	erved	C1PCBP	C1DRCBP	Reserved	C1VBP
0X0E	C2CFG	C2DRCGS[1]	C2DRCGS[0]	Rese	erved	C2PCBP	C2DRCBP	Reserved	C2VBP
0X0F	C3CFG	C3DRCGS[1]	C3DRCGS[0]		Reserved		C3DRCBP	Reserved	C3VBP
0X10	C4CFG	C4DRCGS[1]	C4DRCGS[0]		Reserved		C4DRCBP	Reserved	C4VBP
0X11	C5CFG	C5DRCGS[1]	C5DRCGS[0]		Reserved		C5DRCBP	Reserved	C5VBP
0X12	C6CFG	C6DRCGS[1]	C6DRCGS[0]		Reserved		C6DRCBP	Reserved	C6VBP
0X13	C7CFG	C7DRCGS[1]	C7DRCGS[0]		Reserved		C7DRCBP	Rese	rved
0X14	C8CFG	C8DRCGS[1]	C8DRCGS[0]		Reserved		C8DRCBP	Rese	rved
0X15	LAR1	LA1[3]	LA1[2]	LA1[1]	LA1[0]	LR1[3]	LR1[2]	LR1[1]	LR1[0]
0X16	LAR2	LA2[3]	LA2[2]	LA2[1]	LA2[0]	LR2[3]	LR2[2]	LR2[1]	LR2[0]
0X17	LAR3	LA3[3]	LA3[2]	LA3[1]	LA3[0]	LR3[3]	LR3[2]	LR3[1]	LR3[0]
0X18	LAR4	LA4[3]	LA4[2]	LA4[1] LA4[0] LR4[3]			LR4[2]	LR4[1]	LR4[0]
0X19	ERDLY				Prohil	oited			

Publication Date: Nov. 2021 Revision: 0.7 46/103

0X1A	SCTL5	FS16K	MONO_EN	SW_RSTB	LVUV_FADE	DIS_OV_FADE	DIS_MCLK_DET	Reserved	Reserved
0X1B	SCTL6	DIS_HVUV	Reserved	POST_BOOST	Reserved	DRCM	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X1C	SCTL7	Reserved	A_SEL_FAULT	DEV_NUM	DIS_NG_FADE	Reserved	FADE_SPEED	NG_GAIN[1]	NG_GAIN[0]
0X1D	CFADDR	CFA[7]	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X1E	A1CF1	Reserved	Reserved	Reserved	Reserved]	C1B[27]	C1B[26]	C1B[25]	C1B[24]
0X1F	A1CF2	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X20	A1CF3	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X21	A1CF4	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X22	A2CF1	Reserved	Reserved	Reserved	Reserved]	C2B[27]	C2B[26]	C2B[25]	C2B[24]
0X23	A2CF2	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X24	A2CF3	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X25	A2CF4	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X26	B1CF1	Reserved	Reserved	Reserved	Reserved]	C3B[27]	C3B[26]	C3B[25]	C3B[24]
0X27	B1CF2	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X28	B1CF3	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X29	B1CF4	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X2A	B2CF1	Reserved	Reserved	Reserved	Reserved]	C4B[27]	C4B[26]	C4B[25]	C4B[24]
0X2B	B2CF2	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X2C	B2CF3	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X2D	B2CF4	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X2E	A0CF1	Reserved	Reserved	Reserved	Reserved]	C5B[27]	C5B[26]	C5B[25]	C5B[24]
0X2F	A0CF2	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X30	A0CF3	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]
0X31	A0CF4	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X32	CFRW	Reserved	RBS	R3	W3	RA	R1	WA	W1
0X33	SCTL8		Rese	erved		DRC_SEL	THREE_DRC_TYPE	DRC_LINK	Reserved
0X34	SCTL9				Rese	rved			
0X35	VFT1	MV_FT[1]	MV_FT[0]	C1V_FT[1]	C1V_FT[0]	C2V_FT[1]	C2V_FT[0]	C3V_FT[1]	C3V_FT[0]
0X36	VFT2	C4V_FT[1]	C4V_FT[0]	C5V_FT[1]	C5V_FT[0]	C6V_FT[1]	C6V_FT[0]	Rese	erved
0X37	ID	DN[3]	DN[2]	DN[1]	DN[0]	VN[3]	VN[2]	VN[1]	VN[0]
0X38	LMC	C1_CLR	C2_CLR	C3_CLR	C4_CLR	C5_CLR	C6_CLR	C7_CLR	C8_CLR
0X39	PMC	C1_CLR_RMS	C2_CLR_RMS	C3_CLR_RMS	C4_CLR_RMS	C5_CLR_RMS	C6_CLR_RMS	C7_CLR_RMS	C8_CLR_RMS
0X3A	1STC1LM	C1_LEVEL[31]	C1_LEVEL[30]	C1_LEVEL[29]	C1_LEVEL[28]	C1_LEVEL[27]	C1_LEVEL[26]	C1_LEVEL[25]	C1_LEVEL[24]
0X3B	2NDC1LM	C1_LEVEL[23]	C1_LEVEL[22]	C1_LEVEL[21]	C1_LEVEL[20]	C1_LEVEL[19]	C1_LEVEL[18]	C1_LEVEL[17]	C1_LEVEL[16]
0X3C	3RDC1LM	C1_LEVEL[15]	C1_LEVEL[14]	C1_LEVEL[13]	C1_LEVEL[12]	C1_LEVEL[11]	C1_LEVEL[10]	C1_LEVEL[9]	C1_LEVEL[8]
0X3D	4THC1LM	C1_LEVEL[7]	C1_LEVEL[6]	C1_LEVEL[5]	C1_LEVEL[4]	C1_LEVEL[3]	C1_LEVEL[2]	C1_LEVEL[1]	C1_LEVEL[0]
			_	_	_				

Publication Date: Nov. 2021 Revision: 0.7 47/103

0X3E	1STC2LM	C2_LEVEL[31]	C2_LEVEL[30]	C2_LEVEL[29]	C2_LEVEL[28]	C2_LEVEL[27]	C2_LEVEL[26]	C2_LEVEL[25]	C2_LEVEL[24]
0X3F	2NDC2LM	C2_LEVEL[23]	C2_LEVEL[22]	C2_LEVEL[21]	C2_LEVEL[20]	C2_LEVEL[19]	C2_LEVEL[18]	C2_LEVEL[17]	C2_LEVEL[16]
0X40	3RDC2LM	C2_LEVEL[15]	C2_LEVEL[14]	C2_LEVEL[13]	C2_LEVEL[12]	C2_LEVEL[11]	C2_LEVEL[10]	C2_LEVEL[9]	C2_LEVEL[8]
0X41	4THC2LM	C2_LEVEL[7]	C2_LEVEL[6]	C2_LEVEL[5]	C2_LEVEL[4]	C2_LEVEL[3]	C2_LEVEL[2]	C2_LEVEL[1]	C2_LEVEL[0]
0X42	1STC3LM	C3_LEVEL[31]	C3_LEVEL[30]	C3_LEVEL[29]	C3_LEVEL[28]	C3_LEVEL[27]	C3_LEVEL[26]	C3_LEVEL[25]	C3_LEVEL[24]
0X43	2NDC3LM	C3_LEVEL[23]	C3_LEVEL[22]	C3_LEVEL[21]	C3_LEVEL[20]	C3_LEVEL[19]	C3_LEVEL[18]	C3_LEVEL[17]	C3_LEVEL[16]
0X44	3RDC3LM	C3_LEVEL[15]	C3_LEVEL[14]	C3_LEVEL[13]	C3_LEVEL[12]	C3_LEVEL[11]	C3_LEVEL[10]	C3_LEVEL[9]	C3_LEVEL[8]
0X45	4THC3LM	C3_LEVEL[7]	C3_LEVEL[6]	C3_LEVEL[5]	C3_LEVEL[4]	C3_LEVEL[3]	C3_LEVEL[2]	C3_LEVEL[1]	C3_LEVEL[0]
0X46	1STC4LM	C4_LEVEL[31]	C4_LEVEL[30]	C4_LEVEL[29]	C4_LEVEL[28]	C4_LEVEL[27]	C4_LEVEL[26]	C4_LEVEL[25]	C4_LEVEL[24]
0X47	2NDC4LM	C4_LEVEL[23]	C4_LEVEL[22]	C4_LEVEL[21]	C4_LEVEL[20]	C4_LEVEL[19]	C4_LEVEL[18]	C4_LEVEL[17]	C4_LEVEL[16]
0X48	3RDC4LM	C4_LEVEL[15]	C4_LEVEL[14]	C4_LEVEL[13]	C4_LEVEL[12]	C4_LEVEL[11]	C4_LEVEL[10]	C4_LEVEL[9]	C4_LEVEL[8]
0X49	4THC4LM	C4_LEVEL[7]	C4_LEVEL[6]	C4_LEVEL[5]	C4_LEVEL[4]	C4_LEVEL[3]	C4_LEVEL[2]	C4_LEVEL[1]	C4_LEVEL[0]
0X4A	1STC5LM	C5_LEVEL[31]	C5_LEVEL[30]	C5_LEVEL[29]	C5_LEVEL[28]	C5_LEVEL[27]	C5_LEVEL[26]	C5_LEVEL[25]	C5_LEVEL[24]
0X4B	2NDC5LM	C5_LEVEL[23]	C5_LEVEL[22]	C5_LEVEL[21]	C5_LEVEL[20]	C5_LEVEL[19]	C5_LEVEL[18]	C5_LEVEL[17]	C5_LEVEL[16]
0X4C	3RDC5LM	C5_LEVEL[15]	C5_LEVEL[14]	C5_LEVEL[13]	C5_LEVEL[12]	C5_LEVEL[11]	C5_LEVEL[10]	C5_LEVEL[9]	C5_LEVEL[8]
0X4D	4THC5LM	C5_LEVEL[7]	C5_LEVEL[6]	C5_LEVEL[5]	C5_LEVEL[4]	C5_LEVEL[3]	C5_LEVEL[2]	C5_LEVEL[1]	C5_LEVEL[0]
0X4E	1STC6LM	C6_LEVEL[31]	C6_LEVEL[30]	C6_LEVEL[29]	C6_LEVEL[28]	C6_LEVEL[27]	C6_LEVEL[26]	C6_LEVEL[25]	C6_LEVEL[24]
0X4F	2NDC6LM	C6_LEVEL[23]	C6_LEVEL[22]	C6_LEVEL[21]	C6_LEVEL[20]	C6_LEVEL[19]	C6_LEVEL[18]	C6_LEVEL[17]	C6_LEVEL[16]
0X50	3RDC6LM	C6_LEVEL[15]	C6_LEVEL[14]	C6_LEVEL[13]	C6_LEVEL[12]	C6_LEVEL[11]	C6_LEVEL[10]	C6_LEVEL[9]	C6_LEVEL[8]
0X51	4THC6LM	C6_LEVEL[7]	C6_LEVEL[6]	C6_LEVEL[5]	C6_LEVEL[4]	C6_LEVEL[3]	C6_LEVEL[2]	C6_LEVEL[1]	C6_LEVEL[0]
0X52	1STC7LM	C7_LEVEL[31]	C7_LEVEL[30]	C7_LEVEL[29]	C7_LEVEL[28]	C7_LEVEL[27]	C7_LEVEL[26]	C7_LEVEL[25]	C7_LEVEL[24]
0X53	2NDC7LM	C7_LEVEL[23]	C7_LEVEL[22]	C7_LEVEL[21]	C7_LEVEL[20]	C7_LEVEL[19]	C7_LEVEL[18]	C7_LEVEL[17]	C7_LEVEL[16]
0X54	3RDC7LM	C7_LEVEL[15]	C7_LEVEL[14]	C7_LEVEL[13]	C7_LEVEL[12]	C7_LEVEL[11]	C7_LEVEL[10]	C7_LEVEL[9]	C7_LEVEL[8]
0X55	4THC7LM	C7_LEVEL[7]	C7_LEVEL[6]	C7_LEVEL[5]	C7_LEVEL[4]	C7_LEVEL[3]	C7_LEVEL[2]	C7_LEVEL[1]	C7_LEVEL[0]
0X56	1STC8LM	C8_LEVEL[31]	C8_LEVEL[30]	C8_LEVEL[29]	C8_LEVEL[28]	C8_LEVEL[27]	C8_LEVEL[26]	C8_LEVEL[25]	C8_LEVEL[24]
0X57	2NDC8LM	C8_LEVEL[23]	C8_LEVEL[22]	C8_LEVEL[21]	C8_LEVEL[20]	C8_LEVEL[19]	C8_LEVEL[18]	C8_LEVEL[17]	C8_LEVEL[16]
0X58	3RDC8LM	C8_LEVEL[15]	C8_LEVEL[14]	C8_LEVEL[13]	C8_LEVEL[12]	C8_LEVEL[11]	C8_LEVEL[10]	C8_LEVEL[9]	C8_LEVEL[8]
0X59	4THC8LM	C8_LEVEL[7]	C8_LEVEL[6]	C8_LEVEL[5]	C8_LEVEL[4]	C8_LEVEL[3]	C8_LEVEL[2]	C8_LEVEL[1]	C8_LEVEL[0]
0X5A	I2S_OUT		Rese	erved		SDATAO_CTRL	I2S_DO_SEL[2]	I2S_DO_SEL[2]	I2S_DO_SEL[2]
0X5B	MKHB	MK_HBYTE[7]	MK_HBYTE[6]	MK_HBYTE[5]	MK_HBYTE[4]	MK_HBYTE[3]	MK_HBYTE[2]	MK_HBYTE[1]	MK_HBYTE[0]
0X5C	MKLB	MK_LBYTE[7]	MK_LBYTE[6]	MK_LBYTE[5]	MK_LBYTE[4]	MK_LBYTE[3]	MK_LBYTE[2]	MK_LBYTE[1]	MK_LBYTE[0]
0X5D	HI_RES		Reserved				ANTI_ALIAS_EN	FIR2_EN	ANTI_LC_EN
0X5E	ANA_GAIN			Reserved			ANA_GAIN[2]	ANA_GAIN[1]	ANA_GAIN[0]
0X5F~	Pocarie d								
0X68	Reserved	Reserved							
,		Reserved					TDM_W[2]	TDM_W[1]	TDM_W[0]

Publication Date: Nov. 2021 Revision: 0.7 48/103

Preliminary

AD87120

0X6A	TDM_O	TDM_O[7]	TDM_O[6]	TDM_O[5]	TDM_O[4]	TDM_O[3]	TDM_O[2]	TDM_O[1]	TDM_O[0]
0X6B	FSW			Reserved			FSW[2]	FSW[1]	FSW[0]
0X6C	PMF_FS_R		Reserved		FS_BUF	PMF_BUF[3]	PMF_BUF[2]	PMF_BUF[1]	PMF_BUF[0]
0X6D	ОС				Proh	ibited			
0X6E	DTC				Proh	ibited			
0X6F	TMR0	Prohibited	Filterles	ss_SEL			Prohibited		
0X70	Reserved				Rese	erved			
0X71	TMR1				Proh	ibited			
0X72	TMR2				Proh	ibited			
0X73	Dither				Proh	ibited			
0X74	EDL				Proh	ibited			
0X75	MBIST_1ST_E				Proh	ibited			
0X76	MBIST_2ND_E				Proh	ibited			
0X77	MBIST_3RD_E				Proh	ibited			
0X78	MBIST_4TH_E				Proh	ibited			
0X79	MBIST_1ST_O				Proh	ibited			
0X7A	MBIST_2ND_O				Proh	ibited			
0X7B	MBIST_3RD_O				Proh	ibited			
0X7C	MBIST_4TH_O				Proh	ibited			
0X7D	ERR_REG	A_OCP_N	A_OCP_N A_OTP_N A_UV_N A_DCD_N Reserv				A_CKERR	A_OVP	Reserved
0X7E	ERR_RECORD	A_OCP_N_LATCH	A_OTP_N_LATCH	A_UV_NLATCH	A_DCD_N_LATCH	Reserved	A_CKERRLATCH	A_OVP_LATCH	Reserved
0X7F	ERR_CLEAR	A_OCP_N_CLEAR	A_OTP_N_CLEAR	A_UV_N_CLEAR	A_DCD_N_CLEAR	Reserved	A_CKERR_CLEAR	A_OVP_CLEAR	Reserved

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD87120 supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats are selected by user via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to bit0, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
			010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
			110	TDM
B[4]		Reserved		
DIOI	L INVERSE	L channel phase	0	Normal
B[3]	L_INVERSE	inverse	1	Inverse
DIOI	R INVERSE	R channel phase	0	Normal
B[2]	K_IINVERSE	inverse	1	Inverse
D[1]	LV UVSEL	LV under voltage	0	2.6V
B[1]	LV_UVSEL	selection	1	2.2V
B[0]	LREXC	Left/Right (L/R)	0	No exchanged
סנסו	LINEXO	Channel exchanged	1	L/R exchanged

Publication Date: Nov. 2021 Revision: 0.7 50/103

Address 0X01 : State control 2

AD87120 has a built-in PLL and supports multiple MCLK/Fs or BCLK/Fs ratios.

If BCLK_SEL is high, the ratio is changed to BCLK/FS ratios. On the contrary, the ratio is changed to MCLK/FS ratios. AD87120 has 8K sample rate application via bit 4, FS8K register and 16K sample rate application via 0X1A B[7], FS16K register. Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
חבז	DOLL 051	MCLK-less	0	Disable
B[7]	BCLK_SEL	(BCLK system)	1	Enable
	FS[1:0]			32/44.1/48kHz
B[6:5]		Sampling Frequency	01	64/88.2/96kHz
			1x	Reserved
DIAI	FS8K	9K sample rate	0	Disable
B[4]		8K sample rate	1	Enable

Multiple MCLK/FS in MCLK system or BCLK/FS in BCLK system ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[6:5]=00	B[6:5]=01	B[6:5]=1x
			0000	1024x	512x	
			0001	Reset Default	Reset Default	
			0001	(64x)	(64x)	
			0010	128x	128x	
		MCLK/Fs or	0011	192x	192x	
B[3:0]	PMF[3:0]	BCLK/Fs	0100	256x	256x	Reserved
		Setup	0101	384x	384x	
			0110	512x	512x	
			0111	576x		
				768x	Reserved	
			1001	1024x		

Publication Date: Nov. 2021 Revision: 0.7 51/103

Multiple MCLK/FS ratio setting table of 16K application

BIT	NAME	DESCRIPTION	VALUE	0X1A, B[7]=1
			0000	2048x
			0001	Reset Default
			0001	(128x)
			0010	256x
	PMF[3:0]	MCLK/Fs Setup	0011	384x
B[3:0]			0100	512x
			0101	768x
			0110	1024x
			0111	1152x
			1000	1536x
			1001	2048x

Multiple MCLK/FS ratio setting table of 8K application

BIT	NAME	DESCRIPTION	VALUE	0X01, B[4]=1
			0000	4096x
			0001	Reset Default
			0001	(256x)
			0010	512x
	PMF[3:0]	MCLK/Fs Setup	0011	768x
B[3:0]			0100	1024x
			0101	1536x
			0110	2048x
			0111	2304x
			1000	3072x
			1001	4096x

Publication Date: Nov. 2021 Revision: 0.7 52/103

Address 0X02 : State control 3

AD87120 has mute function including master mute and channel mute.

In one band DRC, master, channel 1, and channel 2 mute will active.

When master mute is enabled, all 2 processing channels are muted. User can mute these 2 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

In three bands DRC, master, channel 1 to channel 6 mute will active.

When master mute is enabled, all 6 processing channels are muted. User can mute these 6 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	EN_CLK_	PLL Clock Output	0	Disabled
B[7]	OUT	PLL Clock Output	1	Enabled
DIEI	MMUTE	Master Mute	0	All channel not muted
B[6]	IVIIVIOTE	Master Mute	1	All channel muted
DIEI	CM1	Channel 1 Mute	0	Ch1 not muted
B[5]	CIVIT	Channel I Mule	1	Only Ch1 muted
DIAI	CM2	Channel 2 Mute	0	Ch2 not muted
B[4]	CIVIZ		1	Only Ch2 muted
DIOI	CM2	CM3 Channel 3 Mute	0	Ch3 not muted
B[3]	CIVIS		1	Only Ch3 muted
DIOI	CM4	CM4 Channel 4 Mute	0	Ch4 not muted
B[2]	CIVI4		1	Only Ch4 muted
D[4]	CM5	Channel E Muta	0	Ch5 not muted
B[1]	Civio	Channel 5 Mute	1	Only Ch5 muted
DIO1	CM6	CM6 Channel 6 Mute	0	Ch6 not muted
B[0]	Civio		1	Only Ch6 muted

Publication Date: Nov. 2021 Revision: 0.7 53/103

Address 0X03 : Master volume control

AD87120 supports both master-volume (Address 0X03) and channel-volume control (Address 0X04, 0X05, 0X06, 0X07, 0X08, 0X09) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

-103dB \leq Total volume (Level A + Level B) \leq +24dB.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			00000010	+11.0dB
			:	:
			00010111	+0.5dB
DIT[7:0]	MV[7:0]	Mastar Valuma	00011000	0.0dB
BIT[7:0]	1017]7.0]	Master Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
BIT[7:0]	C1V[7:0]	01 14 1/-1	00011000	0.0dB
[0.7]110	C1V[7.0]	Channel1 Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Nov. 2021 Revision: 0.7 54/103

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
BIT[7:0]	C2V[7:0]	Channel2 Volume	00011000	0.0dB
ы [7.0]	C2V[7.0]	Chamileiz volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
		11111111	-∞dB	

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
DITITION	C2)/[7,0]	Channel Waluma	00011000	0.0dB
BIT[7:0]	C3V[7:0]	Channel3 Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Nov. 2021 Revision: 0.7 55/103

Address 0X07 : Channel 4 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
DITIZIO	C4\/[7:0]	Channel 4 Volume	00011000	0.0dB
BIT[7:0]	C4V[7:0]		00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X08 : Channel 5 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
DITIZIO	CE\/[7:0]	Ohara I 5 Valoria	00011000	0.0dB
BIT[7:0]	C5V[7:0]	Channel 5 Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

Publication Date: Nov. 2021 Revision: 0.7 56/103

• Address 0X09 : Channel 6 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
BIT[7:0]	C6V[7:0]	Channal & Valuma	00011000 0.0dB	
[0.7]110	C6V[7.0]	Channel 6 Volume	00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
		11111111	-∞dB	

Address 0X0C : State control 4

The AD87120 provides several DSP setting as following.

Due the DSP processing bandwidth limitation, surround sound effect doesn't support in 64KHz/88.2KHz/96KHz sample rate.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZI	BI71 SRBP	Curround by page	0	Surround enable
B[7]	SKBP	Surround bypass	1	Surround bypass
DIEI	ene div	Surround Dolov	0	No delay
B[6]	SRS_dly	Surround Delay	1	Delay 1 DSP sample point(1/96K)
B[5]		Reserved		
D[4]	NCE	Noise gets enable	0	Noise gate disable
D[4]	B[4] NGE	Noise gate enable	1	Noise gate enable
ומום	EQL	EQ Link	0	Each channel uses individual EQ
B[3]	EQL	EQL EQ Link		Channel-2 uses channel-1 EQ
		Post-scale link	0	Each channel uses individual
B[2]	PSL			post-scale
			1	Use channel-1 post-scale
D[4]	DCDD	EQ hypogo	0	EQ enable
B[1]	DOPD	DSPB EQ bypass	1	EQ bypass
BIOI	шор	DC blocking HPF	0	HPF dc enable
B[0]	HPB	HPB bypass	1	HPF dc bypass

Publication Date: Nov. 2021 Revision: 0.7 58/103

 Address 0X0D, 0X0E ,0X0F,0X10,0X11,0X12, 0X13,0X14 : Channel configuration registers

AD87120 can configure each channel to enable or bypass DRC and channel volume and select the limiter set.

Address 0X0D and 0X0E; where x=1 or 2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
		Ol and IV DDO asia	00	DRC gain step =0.5dB
B[7:6]	CXDRCGS		01	DRC gain step =0.25dB
		step	1x	DRC gain step =0.125dB
B[5:4]		Reserved		
B[3]	CxPCBP	Channel x Power	0	Channel x PC enable
D[3]	CXFCBF	Clipping bypass	1	Channel x PC bypass
BIOI	CYDDCBD	CxDRCBP Channel x DRC bypass	0	Channel x DRC enable
B[2]	CXDRCBP		1	Channel x DRC bypass
B[1]		Reserved		
DIO1	CxVBP	Channel x Volume	0	Channel x's master volume operation
B[0]	CXVDP	bypass	1	Channel x's master volume bypass

Address 0X0F, 0X10, 0X11, and 0X12; where x=3, 4, 5, 6

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	DRC gain step =0.5dB
B[7:6]	CXDRCGS	Channel X DRC gain step	01	DRC gain step =0.25dB
			1x	DRC gain step =0.125dB
B[5:3]		Reserved		
B[2]	CxDRCBP	Channel x DRC bypass	0	Channel x DRC enable
اعا	CXDRCBF		1	Channel x DRC bypass
B[1]		Reserved		
B[0]	CxVBP	Channel x Volume	0	Channel x volume operation
		bypass	1	Channel x volume bypass

Publication Date: Nov. 2021 Revision: 0.7 59/103

Address 0X13, and 0X14; where x=7 or 8 C7DRCBP/C8DRCBP use to control L/R post DRC.

The gains are internally setting and they can't be changed via I2C control.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	DRC gain step =0.5dB
B[7:6]	CXDRCGS	Channel X DRC gain step	01	DRC gain step =0.25dB
			1x	DRC gain step =0.125dB
B[5:3]		Reserved		
DIOI	CxDRCBP	Channel v DBC hypers	0	Channel x DRC enable
B[2]	CXDRCDP	Channel x DRC bypass	1	Channel x DRC bypass
B[1:0]		Reserved		

Address 0X1A: State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	ES16K	16K comple rate	0	Disable
B[7]	FS16K	16K sample rate	1	Enable
			0	Stereo
B[6]	MONO_EN	MONO enable register	1	MONO_EN=1 and MONO_KEY=3006(hex)
			-	Output will become mono
B[5]	SW_RSTB	Software reset	0	Reset
P[0]	3W_K3TB	Software reset	1	Normal operation
D[4]	LVUV_FADE	Low Under Voltage	0	No Fade
B[4]	LVUV_FADE	Fade	1	Fade
DIOI	DIS_OV_FADE	Disable over voltage	0	Fade
B[3]	DIS_OV_FADE	fade	1	No fade
Biol	DIS CLK DET	Disable CLK detect	0	Enable CLK detect circuit
B[2]	DIS_CLK_DET	circuit	1	Disable CLK detect circuit
B[1:0]		Reserved		

Publication Date: Nov. 2021 Revision: 0.7 60/103

Address 0X1B : State control 6

AD87120 can disable HV under voltage detection via bit 7.

AD87120 support multi-level HV under voltage detection via bit2~ bit0, using this function, AD87120 will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIC HVIIV	DIS_HVUV	Disable HV under	0	Enable
B[7]	טוט_חעטע	voltage selection	1	Disable
B[6]		Reserved		
D[E]	DOST DOOST	POST boost +48dB	0	0dB
B[5]	POST_BOOST	POST 000St +460B	1	+48dB
B[4]		Reserved		
ומן	B[3] DRCM	DRC mode selection	0	Peak mode
D[S]			1	RMS mode
			000	4V
			001	7.2V
			010	9.7 V
B[2:0]	HV_UVSEL	UV detection level	011	13.2V
			100	15.5 V
			101	19.5 V
			Others	7.2V

Publication Date: Nov. 2021 Revision: 0.7 61/103

Address 0X1C: State control 7

The $\overline{\text{ERROR}}$ pin of AD87120 is a dual function pin. It is treated as a I²C device address selection input when B[6] is set as low. It will become as an ERROR output pin when B[6] is set as high.

AD87120 supports 2 device address and 4 device address selection via bit 5. AD87120 provide 2 kind of fade in/out speed via bit 2. One is 1.25ms from mute to 0dB. The other one is 10ms from mute to 0dB.

AD87120 provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via bit1 \sim bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]	B[6] A_SEL_FAULT	I ² C address selection or ERROR output	0	I ² C device address selection
			1	ERROR output
DIE1	DEV_NUM	Device address	0	2 address
B[5]	DEV_NOW	number for I ² C	1	4 address
DIAI	DIG NG FADE	Disable noise gets fade	0	Fade
B[4]	DIS_NG_FADE	Disable noise gate fade	1	No fade
B[3]		Reserved		
DIOI	FADE_SPEED	Fade in/out speed	0	1.25ms
B[2]	FADE_SPEED	selection	1	10ms
			00	x1/8
D[4.0]	NO CAINITA O	Noise gote goin	01	x1/4
B[1:0]	NG_GAIN[1:0]	Noise gate gain	10	x1/2
			11	Mute

Publication Date: Nov. 2021 Revision: 0.7 62/103

Address 0X1D ~0X2D : User-defined coefficients registers

An on-chip RAM in AD87120 stores user-defined EQ, mixing, pre-scale, post-scale coefficients...etc. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X1D), five sets of registers (address 0X1E to 0X31) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X32) to control access of the coefficients in the RAM..

Address 0X1D

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	CFA[7:0]	Coefficient RAM base	00000000	
[[- []	address		

Address 0X1E, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
B[3:0]	C1B[27:24]	First 4-bits of		
Б[3.0]	C16[21.24]	coefficients A1		

Address 0X1F, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] C4D[22.40]	C1D[22:16]	Second byte of		
B[7:0]	C1B[23:16]	coefficients A1		

Address 0X20, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7:0] C4D[45:0]	Third byte of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X21, A1cf4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZIOI	D[7.0] C4D[7.0]	Fourth byte of		
B[7:0]	C1B[7:0]	coefficients A1		

Publication Date: Nov. 2021 Revision: 0.7 63/103

Address 0X22, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DI3:01	C2B[26:34]	First 4-bits of		
B[3:0]	C2B[28:24]	coefficients A2		

Address 0X23, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	0.07.01	Second byte of		
B[7:0]	C2B[23:16]	coefficients A2		

Address 0X24, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7:0] COD[45:0]	Third byte of		
B[7:0]	C2B[15:8]	coefficients A2		

Address 0X25, A2cf4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D17 01	C0D[7:0]	Fourth byte of		
B[7:0]	C2B[7:0]	coefficients A2		

Address 0X26, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DI3:01	C3B[28:24]	First 4-bits of		
B[3:0]	C3D[20.24]	coefficients B1		

Address 0X27, B1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C3B[23:16]	C2D[22.46]	Second byte of		
	coefficients B1			

Publication Date: Nov. 2021

Revision: 0.7 64/103

Address 0X28, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] COD[4	C2D[4E:0]	Third byte of		
B[7:0]	C3B[15:8]	coefficients B1		

Address 0X29, B1cf4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D17.01 C0D17.0	Capizioi	Fourth byte of		
B[7:0]	C3B[7:0]	coefficients B1		

Address 0X2A, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DI3:01	C4B[28:24]	First 4-bits of		
B[3:0]	C4D[20.24]	coefficients B2		

Address 0X2B, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	[7:0] C4B[23:16]	Second byte of		
Б[7.0]		coefficients B2		

Address 0X2C, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] (C4D[4E.0]	Third byte of		
B[7:0]	C4B[15:8]	coefficients B2		

Address 0X2D, B2cf4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	C4D[7.0]	Fourth byte of		
B[7:0]	C4B[7:0]	coefficients B2		

Address 0X2E, B2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
B[3:0] C5B[28:24]	First 4-bits of			
	C5B[28:24]	coefficients A0		

Publication Date: Nov. 2021 Revision: 0.7 65/103

Address 0X2F, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	CED[33:46]	Second byte of		
B[7:0]	O C5B[23:16]	coefficients A0		

Address 0X30, A0cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] 0	OED[45.0]	Third byte of		
B[7:0]	C5B[15:8]	coefficients A0		

Address 0X31, A0cf4

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7.0] OFD[7.0]	Fourth byte of		
B[7:0]	C5B[7:0]	coefficients A0		

Address 0X32, CfRW

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
DIE]	RBS	RAM bank selection	0	Select RAM bank 0
B[6]	KDO	RAIVI Darik Selection	1	Select RAM bank 1
D[E]	R3	Enable of reading three	0	Read complete
B[5]	KS	coefficients from RAM	1	Read enable
D[4]	W3	Enable of writing three	0	Write complete
B[4]	VV3	coefficients to RAM	1	Write enable
DIOI	RA	Enable of reading a set of	0	Read complete
B[3]	KA	coefficients from RAM	1	Read enable
וכום	R1	Enable of reading a single	0	Read complete
B[2]	ΚI	coefficients from RAM	1	Read enable
D[4]	WA	Enable of writing a set of	0	Write complete
B[1]	VVA	coefficients to RAM	1	Write enable
DIO1	W1	Enable of writing a single	0	Write complete
B[0]	VVI	coefficient to RAM	1	Write enable

Publication Date: Nov. 2021 Revision: 0.7 66/103

Preliminary

Address 0X33 : State control 8

AD87120 can support one band and three band DRC selection via bit3.

In three bands DRC, AD87120 has two different types for selection.

In one band DRC mode, CH1 and CH2 DRC threshold are the same via setting bit1, DRC_LINK as 1, and CH1 and CH2 can have different DRC threshold via setting bit1 as 0.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DIOI	DBC SEL	DRC mode selection	0	One band DRC
B[3]	DRC_SEL	DRC mode selection	1	Three band DRC
DIOI	TUDEE DOC TYPE	Three hand DDC tune	0	TYPE1
B[2]	2] THREE_DRC_TYPE	Three band DRC type	1	TYPE2
DIAI	DDC LINK	One hand DDC link	0	1.1 application
B[1]	DRC_LINK	One band DRC link	1	Stereo application
B[0]		Reserved		

Publication Date: Nov. 2021 Revision: 0.7 67/103

Address 0X35/0X36: Volume fine tune

AD87120 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from $0dB \sim -0.375dB$ and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

Address 0X35

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]	MV/ ET	Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIE: 41	C4V FT	Channel 1 Volume Fine	01	-0.125dB
B[5:4]	C1V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[3:3]	COV ET	Channel 2 Volume Fine	01	-0.125dB
B[3:2]	C2V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[1:0]	Cal/ ET	Channel 3 Volume Fine	01	-0.125dB
B[1:0]	C3V_FT	Tune	10	-0.25dB
			11	-0.375dB

Publication Date: Nov. 2021 Revision: 0.7 68/103

Address 0X36

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
D[7:6]	CAV ET	Channel 4 Volume Fine	01	-0.125dB
B[7:6]	C4V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIE: 41	O5)/ 5T	Channel 5 Volume Fine	01	-0.125dB
B[5:4]	C5V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
B[3:2]	C6V_FT	Channel 6 Volume Fine	01	-0.125dB
		Tune	10	-0.25dB
			11	-0.375dB
B[1:0]		Reserved		

• Address 0X37 : Device number and Version number

Device number and version number are the ID for the device.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]	DN	Device number	0000	Identification code
B[3:0]	VN	Version number	0000	Identification code

Address 0X38 : level meter clear

AD87120 has 8 set of level meter which hold the maximum absolute value.

Each level meter has its own level meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	C1 CLB	1_CLR Clear CH1 level meter -	0	No clear
B[7]	CI_CLK		1	Clear
DIE1	C2 CLR	Clear CH2 level meter	0	No clear
B[6]	CZ_CLK	Clear Criz level meter	1	Clear
DIE]	C3 CLB	Clear CH3 level meter	0	No clear
D[3]	B[5] C3_CLR	Clear Ch3 lever meter	1	Clear
DIAI	C4 CLR	Clear CH4 level meter	0	No clear
D[4]	B[4] C4_CLR	LK Clear Cn4 level meter	1	Clear
B[3]	C5_CLR	Clear CH5 level meter	0	No clear

			1	Clear
ונטו	CG CLD	01 01101	0	No clear
B[2]	C6_CLR	Clear CH6 level meter	1	Clear
D[4]	D(4) 07 01 D	D. Olasa Oldz laval mater	0	No clear
B[1]	C7_CLR	Clear CH7 level meter	1	Clear
DIO1	Co CLB	Clear CH8 level meter	0	No clear
B[0] C8_CLR		Clear Crio level meter	1	Clear

• Address 0X39 : Power meter clear

AD87120 has 8 set of power meter which continue update RMS value.

Each power meter has its own power meter clear.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	DI71 C1 CLD DMC	Clear CH1 power meter	0	No clear
B[7]	CI_CLK_KIVIS	Clear CHT power meter	1	Clear
DIEI	C2 CLD DMS	Clear CH2 power meter	0	No clear
B[6]	CZ_CLK_KIVIS	Clear CH2 power meter	1	Clear
DIE1	C2 CLD DMC	Clear CH3 power meter	0	No clear
B[5]	C3_CLK_KIVIS	Clear Ch3 power meter	1	Clear
DIAI	C4 CLD DMS	Clear CH4 power meter	0	No clear
B[4]	C4_CLK_KIVIS		1	Clear
DIOI	CE CLD DMC	Clear CH5 power meter	0	No clear
B[3]	C3_CLK_KIVIS		1	Clear
DIOI	C6 CLD DMC	Clear CH6 power meter	0	No clear
B[2]	CO_CLK_KIVIS	Clear Cho power meter	1	Clear
D[4]	C7 CLD DMS	Clear CH7 power meter	0	No clear
B[1]	OI_OLK_KIVIS	Cieai Cn7 powei meter	1	Clear
B[0]	CS CLD DMC	Clear CH8 nower motor	0	No clear
P[0]	OU_OLIX_IXIVIO	Clear CH8 power meter	1	Clear

Publication Date: Nov. 2021 Revision: 0.7 70/103

Address 0X3A: First byte of C1 level meter

In one band DRC, channel-1 level meter is used for L channel.

In three bands DRC, channel-1 level meter is high frequency path of L channel.

The addresses to show channel-1 level meter are 0X3A, 0X3B, 0X3C, and 0X3D.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] O4 EVEL[04	C4 EVEL[34,34]		0000000	Reset value
B[7:0]	C1_LEVEL[31:24]	level meter	Х	Read out

Address 0X3B : Second byte of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.OI		Second byte of channel 1	0000000	Reset value
B[7:0]	C1_LEVEL[23:16]	level meter	Х	Read out

Address 0X3C : Third byte of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] (C4 E\/E [4E.0]		0000000	Reset value
B[7:0]	C1_LEVEL[15:8]	level meter	Х	Read out

Address 0X3D : Fourth byte of C1 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C4 E\/E [7:0]	Fourth byte of channel 1	0000000	Reset value
	C1_LEVEL[7:0]	level meter	Х	Read out

Address 0X3E : First byte of C2 level meter

In one band DRC, channel-2 level meter is used for R channel.

In three bands DRC, channel-2 level meter is high frequency path of R channel.

The addresses to show channel-2 level meter are 0X3E, 0X3F, 0X40, and 0X41.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2_LEVEL[31:24]		0000000	Reset value
		level meter	Х	Read out

Publication Date: Nov. 2021 Revision: 0.7 71/103

Address 0X3F : Second byte of C2 level meter

In one band DRC, channel-2 level meter is used for R channel.

In two/three bands DRC, channel-2 level meter is high frequency path of R channel.

The addresses to show channel-2 level meter are 0X47, 0X48, and 0X49.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2_LEVEL[23:16]	Second byte of channel 2	0000000	Reset value
		level meter	X	Read out

Address 0X40 : Third byte of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2_LEVEL[15:8]	Third byte of channel 2	0000000	Reset value
		level meter	Х	Read out

Address 0X41 : Fourth byte of C2 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2_LEVEL[7:0]	Fourth byte of channel 2	0000000	Reset value
		level meter	Х	Read out

Address 0X42 : First byte of C3 level meter

In one bands DRC, channel-3 level meter is no use.

In three bands DRC, channel-3 level meter is low frequency path of L channel.

The addresses to show channel-3 level meter are 0X42, 0X43, 0X44, and 0X45.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C3_LEVEL[31:24]		0000000	Reset value
		level meter	Х	Read out

Address 0X43 : Second byte of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C3_LEVEL[23:16]	Second byte of channel 3	0000000	Reset value
		level meter	Х	Read out

Publication Date: Nov. 2021 72/103

Elite Semiconductor Microelectronics Technology Inc. Revision: 0.7

Address 0X44 : Third byte of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] O0 LEVEL(45:0]		0000000	Reset value	
B[7:0]	C3_LEVEL[15:8]	level meter	Х	Read out

Address 0X45 : Fourth byte of C3 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] C0 E\/E [7:0]	Fourth byte of channel 3	0000000	Reset value	
B[7:0]	C3_LEVEL[7:0]	level meter	Х	Read out

Address 0X46 : First byte of C4 level meter

In one bands DRC, channel-4 level meter is no use.

In three bands DRC, channel-4 level meter is low frequency path of R channel.

The addresses to show channel-4 level meter are 0X46, 0X47, 0X48, and 0X49.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] O4 LEVEL[04:04]		0000000	Reset value	
B[7:0]	C4_LEVEL[31:24]	level meter	Х	Read out

Address 0X47 : Second byte of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	D[7:0] C4 EVEL[00:46]	Second byte of channel 4	0000000	Reset value
Б[7.0]	C4_LEVEL[23:16]	level meter	Х	Read out

Address 0X48 : Third byte of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7:0] O4 LEVEL(45:0]	Third byte of channel 4	0000000	Reset value
B[7:0]	C4_LEVEL[15:8]	level meter	X	Read out

Publication Date: Nov. 2021 Revision: 0.7 73/103

Address 0X49 : Fourth byte of C4 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	.01 .04 .5\/5\/5\/5\	Fourth byte of channel 4	0000000	Reset value
Б[7.0]	C4_LEVEL[7:0]	level meter	Х	Read out

Address 0X4A: First byte of C5 level meter

In one band DRC, channel-5 level meter is no use.

In three bands DRC, channel-5 level meter is band pass frequency path of L channel.

The addresses to show channel-5 level meter are 0X4A, 0X4B, 0X4C, and 0X4D.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7 0] OF LEVELIOA 041		0000000	Reset value	
B[7:0]	C5_LEVEL[31:24]	level meter	Х	Read out

Address 0X4B : Second byte of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0] OF LEVELION 40]	Second byte of channel 5	0000000	Reset value	
B[7:0]	C5_LEVEL[23:16]	level meter	Х	Read out

Address 0X4C : Third byte of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0] OF LEVEL(45:0]	Third byte of channel 5	0000000	Reset value	
B[7:0]	C5_LEVEL[15:8]	level meter	Х	Read out

Address 0X4D : Fourth byte of C5 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	D[7:0] OF LEVEL[7:0]	Fourth byte of channel 5	0000000	Reset value
Б[7.0]	C5_LEVEL[7:0]	level meter	Х	Read out

Publication Date: Nov. 2021 Revision: 0.7 74/103

Address 0X4E : First byte of C6 level meter

In one band DRC, channel-6 level meter is no use.

In three bands DRC, channel-6 level meter is band pass frequency path of R channel.

The addresses to show channel-6 level meter are 0X4E, 0X4F, 0X50, and 0X51.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	D[7:0] OC EVEL[04:04]		0000000	Reset value
Б[7.0]	C6_LEVEL[31:24]	level meter	Х	Read out

Address 0X4F : Second byte t of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.OI		Second byte of channel 6	0000000	Reset value
B[7:0]	C6_LEVEL[23:16]	level meter	Х	Read out

Address 0X50 : Third byte of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	C6 EVEL[45:0]	Third byte of channel 6	0000000	0000 Reset value
Б[7.0]	B[7:0] C6_LEVEL[15:8]	level meter	Х	Read out

Address 0X51 : Fourth byte t of C6 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C6_LEV	C6 EVEL[7:0]	Fourth byte of channel 6	0000000	0 Reset value
		level meter	Х	Read out

Address 0X52 : Firth byte of C7 level meter

In one band DRC, channel-7 level meter is no use.

In three bands DRC, channel-7 level meter is summation path of L channel.

The addresses to show channel-7 level meter are 0X52, 0X53, 0X54, and 0X55.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C7_LEVEL[31:24]	27 1 5 1/5 1 (24 : 24)		0000000	Reset value
	level meter	X	Read out	

Publication Date: Nov. 2021 Revision: 0.7 75/103

Address 0X53: Second byte of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	D[7:0]	Second byte of channel 7	0000000	Reset value
B[7:0]	C7_LEVEL[23:16]	level meter	Х	Read out

Address 0X54 : Third byte of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	C7 E\/E [4E:0]		0000000	Reset value
Б[7.0]	B[7:0] C7_LEVEL[15:8]	level meter	Х	Read out

Address 0X55 : Fourth byte of C7 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	C7 EVEL[7:0]	Fourth byte of channel 7	0000000	Reset value
B[7:0]	C7_LEVEL[7:0]	level meter	Х	Read out

Address 0X56 : First byte of C8 level meter

In one band DRC, channel-8 level meter is no use.

In three bands DRC, channel-8 level meter is summation path of L channel.

The addresses to show channel-8 level meter are 0X56, 0X57, 0X58, and 0X59.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C8_LEVEL[31:24]	C0 EVEL[34:34]		0000000	Reset value
	level meter	Х	Read out	

Address 0X57 : Second byte of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	D[7:0] O0 E\/E\ [00:46]	Second byte of channel 8	0000000	Reset value
Б[7.0]	C8_LEVEL[23:16]	level meter	Х	Read out

Publication Date: Nov. 2021 Revision: 0.7 76/103

AD87120

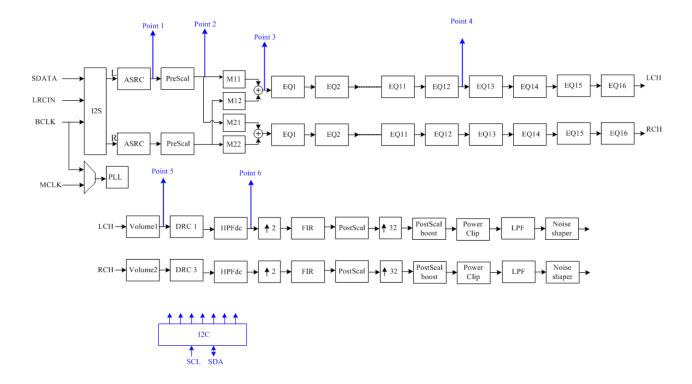
• Address 0X58 : Third byte of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7.0]	C0 E\/E [45:0]		0000000	Reset value
B[7:0]	[7:0] C8_LEVEL[15:8]	level meter	Х	Read out

• Address 0X59 : Fourth byte t of C8 level meter

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C8_LEVEL[7:0]	Fourth byte of channel 8	0000000	Reset value
Б[7.0]		level meter	Х	Read out

Publication Date: Nov. 2021 Revision: 0.7 77/103



•

Address 0X5A: I²S output selection

AD87120 provide I²S output function and the output point.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
DIOI	SDATAO CTBI	SDTATO pin control	0	GND
B[3]	SDATAO_CTRL SE	SDTATO pin control	1	SDATAO
			000	DSP input (Point1)
		S_DO_SEL I2S DATA OUTPUT selection	001	Pre-scale output (Point2)
			010	Mixer output (Point3)
B[2:0]	I2S_DO_SEL		011	EQ12 output (Point4)
			100	Volume output (Point5)
			101	DC blocking HPF output (Point6)
			110/111	Reserved

Address 0X5B: MONO_KEY high byte
 AD87120 doesn't have PBTL pin. It needs to set MONO_EN=1 & MONO_KEY=3006 (hex) to configure MONO type.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
DIZ.O1 MIZ LID	MIZ LIDVTE	DVTE MONO KEV bish bish	others	Stereo
Б[7.0]	B[7:0] MK_HBYTE MONO KEY high byte	00110000	Mono	

Address 0X5C : MONO_KEY low byte

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	MK LBYTE	MONO KEY low byte	others	Stereo
Б[7.0]	WIK_LDTIE		00000110	Mono

Address 0X5D : Wide Band Setting Register

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:2]		Reserved		
D[4]	FID2 FN	Enable FID2	0	Disabled
B[1]	FIRZ_EIN	FIR2_EN Enable FIR2	1	Enable
DIOI	ANTI LO EN	Frable ANTL LC	0	Disabled
B[0]	ANTI_LC_EN	Enable ANTI_LC	1 Enable	Enable

Fs=96KHz input, please set address 0X5D="0X06" to extend frequency response from 20kHz to 40KHz if Wide Band Setting spec. is request. We called this "Wide Band Setting enable".

Publication Date: Nov. 2021 Revision: 0.7 79/103

Address 0X5E : Analog gain

AD87120 provide several analog gain for different voltage application.

For 24V application, setting +15.5dB is suggested.

For 20V application, setting +14.5dB is suggested.

For 18V application, setting +13dB is suggested.

For 15V application, setting +11.5dB is suggested.

For 12V application, setting +9.5dB is suggested.

For 10V application, setting +8dB is suggested.

For 8V application, setting +6dB is suggested.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:3]		Reserved		
			000	X6(+15.5dB)
			001	X5(+14dB)
		Analog gain control	010	X4.5(+13dB)
D[O.O]	ANA GAIN		011	X3.75(+11.5dB)
B[2:0]	ANA_GAIN		100	X3(+9.5dB)
			101	X2.5(+8dB)
			110	X2(+6dB)
			111	X1.5(3.5dB)

Publication Date: Nov. 2021 Revision: 0.7 80/103

• Address 0X69 : TDM word length selection

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:2]		Reserved		
			00	32 bits
D[1:0]	WODD WIDTH SEL	TDM word length	01	24 bits
B[1:0]	WORD_WIDTH_SEL	selection	10	20 bits
			11	16 bits

Address 0X6A: TDM offset

These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as the number of BCLK from the starting (MSB) of audio frame to the starting of the desired audio sample

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	Offset is 0 BCLK
			0000001	Offset is 1 BCLK
			0000010	Offset is 2 BCLK
B[7:0]	TDM_OFFSET	TDM offset bits		
			11111101	Offset is 253 BCLK
			11111110	Offset is 254 BCLK
			11111111	Offset is 255 BCLK

• Address 0X6B : PWM frequency selection

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:2]		Reserved		
			00	300KHZ
B[1:0]	ECM	PWM frequency selection	01	600KHZ
Б[1.0]	FSW		10	800KHz
			11	Reserved

Publication Date: Nov. 2021 Revision: 0.7 81/103

Address 0X6C : FS and PMF read out

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
DIAI	FS_BUF	CC DUE register	FS_BUF=FS	No clock error
B[4]	(read only)	FS BUF register	FS_BUF=00!=FS	clock error
D[3,0]	PMF_BUF	DMC DUC register	PMF_BUF=PMF	No clock error
B[3:0]	(read only)	PMF BUF register	PMF_BUF=0010!=PMF	clock error

• Address 0X6F : Filter-less selection

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Prohibited		
			00	Disabled
DIG:E1	Filterless_SEL	EMI enhancement	01	Prohibited
B[6:5]	Filleriess_SEL		10	Prohibited
			11	Enable
B[4:0]		Prohibited		

Publication Date: Nov. 2021 Revision: 0.7 82/103

• Address 0X7D : Protection register

The protection registers will show what kind of protection occurs.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
D[7]	A_OCP_N	OCD register	0	OC occur	
B[7]	A_OCP_N	OCP register	1	Normal	
B[6]	A_OTP_N	OTP register	0	OT occur	
D[0]	A_OTF_N	OTF Tegister	1	Normal	
B[5]	A_UV_N	UV register	0	UV occur	
D[3]	A_UV_N	O v Tegistei	1	Normal	
B[4]	A DCD N	A_DCD_N DCD register	0	DCD occur	
D[4]	A_DCD_N		1	Normal	
B[3]	A DOLIV N		A_BSUV_N BSUV register	0	BSUV occur
D[3]	A_BSUV_IN	B30 v Tegister	1	Normal	
Biol	A_CKERR_N	CKERR register	0	CKERR occur	
B[2]	A_CKERK_N	CKERR register	1	Normal	
D[1]	1 A OVD N	OVP register	0	OV occur	
B[1]	A_OVP_N	OVP register	1	Normal	
B[0]		Reserved			

Publication Date: Nov. 2021 Revision: 0.7 83/103

• Address 0X7E : Protection latch register

The protection registers will show what kind of protection ever occurred.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
וכום	A OCD NI LATOU	OCD lateb register	0	OC ever occur
B[7]	A_OCP_N_LATCH	OCP_N_LATCH OCP latch register		Normal
DIGI	A OTP N LATCH OTP latch register —		0	OT ever occur
B[6]	A_OTP_N_LATCH	OTP_N_LATCH OTP latch register		Normal
DIEI	A 11\/ N 1 ATCH	V_N_LATCH UV latch register —		UV ever occur
B[5]	A_UV_N_LATCH	OV laten register	1	Normal
DIVI	A DCD N LATCH	DCD lotely register	0	DCD ever occur
B[4]	A_DCD_N_LATCH DCD latch register		1	Normal
ומם	A DCIIV N. LATCH DCIIV loteb register		0	BSUV ever occur
B[3]	A_BSUV_N_LATCH	BSUV latch register	1	Normal
B[2]	A_CKERR_N_LATCH	CKERR latch register	0	CKERR ever occur
D[Z]	A_CKERK_N_LATOR	CKEKK later register	1	Normal
B[1]	A OVE N LATCH	OVP latch register	0	OV ever occur
D[1]	A_OVP_N_LATCH OVP latch regi		1	Normal
B[0]		Reserved		

Publication Date: Nov. 2021 Revision: 0.7 84/103

Preliminary

• Address 0X7F : Protection latch clear register

The protection latch clear registers will show what kind of protection ever occurred.

Using the protection latch clear registers can clear the corresponding protection latch registers.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	A OCD N CLEAD	OCD lateb alast register	0	No clear
B[7]	A_OCP_N_CLEAR	OCP latch clear register	1	Clear
DIEI	A_OTP_N_CLEAR	OTP_N_CLEAR OTP latch clear register		No clear
B[6]	A_OTF_N_CLEAR	OTF laten clear register	1	Clear
DIE1	A_UV_N_CLEAR	UV latch clear register	0	No clear
B[5]	A_UV_N_CLEAR	OV lateri clear register	1	Clear
B[4]	A_DCD_N_CLEAR	DCD latch clear register	0	No clear
D[4]	A_DCD_N_CELAN	DCD later clear register	1	Clear
B[3]	A_BSUV_N_CLEAR	BSUV latch clear register	0	No clear
D[O]	A_ BOOV _N _OLLAN	B30 V later clear register	1	Clear
B[2]	A_CKERR_N_CLEAR	CKERR latch clear	0	No clear
الاحال	A_OKLKK_N_OLLAK	register	1	Clear
B[1]	A_OVP_N_CLEAR	OVP latch clear register	0	No clear
-U1	A_OVI_IN_OLLAN	OVI latell deal register	1	Clear
B[0]		Reserved		

Publication Date: Nov. 2021 Revision: 0.7 85/103

RAM access

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bis of address to I²C address-0X1D
- 2. Write 1 to R1 bit and write 1/0 to RBS in address-0X32
- 3. Read first byte of coefficient in I²C address-0X1E
- 4. Read second byte of coefficient in I²C address-0X1F
- 5. Read third byte of coefficient in I²C address-0X20
- 6. Read fourth byte of coefficient in I²C address-0X21

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I²C address-0X1D
- 2. Write 1 to RA bit and write 1/0 to RBS in address-0X32
- 3. Read first byte of coefficient A1 in I2C address-0X1E
- Read second byte of coefficient A1in I²C address-0X1F
- 5. Read third byte of coefficient A1 in I²C address-0X20
- 6. Read fourth byte of coefficient A1 in I2C address-0X21
- 7. Read first byte of coefficient A2 in I2C address-0X22
- 8. Read second byte of coefficient A2 in I²C address-0X23
- 9. Read third byte of coefficient A2 in I2C address-0X24
- 10. Read fourth byte of coefficient A2 in I²C address-0X25
- 11. Read first byte of coefficient B1 in I2C address-0X26
- 12. Read second byte of coefficient B1 in I²C address-0X27
- 13. Read third byte of coefficient B1 in I2C address-0X28
- 14. Read fourth byte of coefficient B1 in I2C address-0X29
- 15. Read first byte of coefficient B2 in I2C address-0X2A
- 16. Read second byte of coefficient B2 in I2C address-0X2B
- 17. Read third byte of coefficient B2 in I²C address-0X2C
- 18. Read fourth byte of coefficient B2 in I2C address-0X2D
- 19. Read first byte of coefficient A0 in I2C address-0X2E
- 20. Read second byte of coefficient A0 in I2C address-0X2F
- 21. Read third byte of coefficient A0 in I2C address-0X30
- 22. Read fourth byte of coefficient A0 in I²C address-0X31

Write a single coefficient from RAM:

- 1. Write 7-bis of address to I²C address-0X1D
- 2. Write first byte of coefficient in I²C address-0X1E
- 3. Write second byte of coefficient in I²C address-0X1F
- 4. Write third byte of coefficient in I²C address-0X20
- 5. Write fourth byte of coefficient in I²C address-0X21
- 6. Write 1 to W1 bit and write 1/0 to RBS in address-0X32

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I²C address-0X1D
- 2. Write first byte of coefficient A1 in I2C address-0X1E
- 3. Write second byte of coefficient A1 in I2C address-0X1F
- 4. Write third byte of coefficient A1 in I2C address-0X20
- 5. Write fourth byte of coefficient A1 in I2C address-0X21
- 6. Write first byte of coefficient A2 in I²C address-0X22
- 7. Write second byte of coefficient A2 in I2C address-0X23
- 8. Write third byte of coefficient A2 in I2C address-0X24
- 9. Write fourth byte of coefficient A2 in I2C address-0X25
- 10. Write first byte of coefficient B1 in I2C address-0X26
- 11. Write second byte of coefficient B1 in I²C address-0X27
- 12. Write third byte of coefficient B1 in I2C address-0X28
- 13. Write fourth byte of coefficient B1 in I²C address-0X29
- 14. Write first byte of coefficient B2 in I2C address-0X2A
- 15. Write second byte of coefficient B2 in I²C address-0X2B
- 16. Write third byte of coefficient B2 in I2C address-0X2C
- 17. Write fourth byte of coefficient B2 in I2C address-0X2D
- 18. Write first byte of coefficient A0 in I2C address-0X2E
- 19. Write second byte of coefficient A0 in I²C address-0X2F
- 20. Write third byte of coefficient A0 in I²C address-0X30
- 21. Write fourth byte of coefficient A0 in I2C address-0X31
- 22. Write 1 to WA bit and write 1/0 to RBS in address-0X32

Note that: the read and write operation on RAM coefficients works only if LRCIN switching on rising edge. And, before each writing operation, it is necessary to read the address-0X32 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

Publication Date: Nov. 2021 Revision: 0.7 87/103

User-defined equalizer

The AD87120 provides 32 parametric Equalizer (EQ). User can program suitable coefficients via I²C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.25. i.e., 3-bits for integer (MSB is the sign bit) and 25-bits for mantissa. Each coefficient range is from 0x8000000 (-4) to 0x7FFFFF (+3.99999997). These coefficients are stored in User Defined RAM and are referenced in following manner:

$$CHxEQyA0 = A0$$

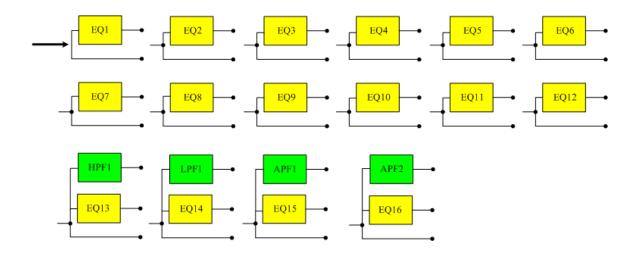
CHxEQyA1 = A1

CHxEQyA2 = A2

CHxEQyB1 = -B1

CHxEQyB2 = -B2

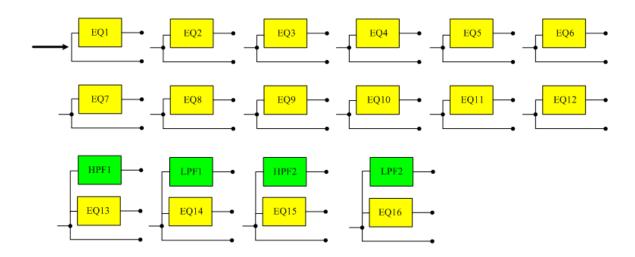
Where x and y represents the number of channel and the band number of EQ biquard.


All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x2000000 which represents 1.

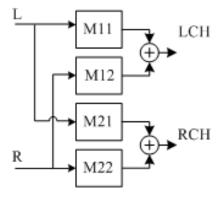
EQ arrangement

AD87120 provide 16 EQ per channel.

In three bands DRC type 1, EQ-13, EQ-14, EQ-15, and EQ-16 will perform as HPF1, LPF1, APF1, and APF2 respectively.


In three bands DRC type 2, EQ-13, EQ-14, EQ-15, and EQ-16 will perform as HPF1, LPF1, HPF2, and LPF2 respectively.

Elite Semiconductor Microelectronics Technology Inc.


Publication Date: Nov. 2021 Revision: 0.7 88/103

Mixer

The AD87120 provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x8000000 (-1) to 0x7FFFFFF (0.99999999). The function block diagram is as following:

Publication Date: Nov. 2021 Revision: 0.7 89/103

Pre-scale

For each audio channel, AD87120 can scale input signal level prior to EQ processing which is realized by a 28-bit signed fractional multiplier. The pre-scale factor, ranging from -16 (0x8000000) to 15.99999988 (0x7FFFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x07e88e0. Programming of RAM is described in RAM access.

Post-scale

The AD87120 provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 28-bit signed fractional multiplier. The post-scaling factor, ranging from -4 (0x8000000) to 3.99999997 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x2000000. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

Power Clipping

The AD87120 provides power clipping function to avoid excessive signal that may destroy loud speaker. 3. The power clipping level is defined by 28-bit representation and is stored in RAM address 0X54 of RAM bank 0. The following table shows the power clipping level's numerical representation.

GAIN=5*ANA_GAIN

(Note. ANA_GAIN, please refer the setting to address 0X5E)

•			
Sample	calculation	for power clipp	ına

Max	dB	Linear	Decimal	Hex
amplitude	uБ	Linear	Decimal	(3.25 format)
GAIN	0	1	33554432	2000000
GAIN *0.707	-3	0.707	23722976	169FBE0
GAIN *0.5	-6	0.5	16777216	1000000
GAIN *L	Х	L=10 ^(x/20)	D=33554432xL	H=dec2hex(D)

DRC threshold

The AD87120 provides DRC function. When the input RMS exceeds the programmable DRC threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Four sets of DRC are provided. DRC1 is used for high frequency path in three bands DRC and used for L/R channel in one band DRC. DRC2 is used for low frequency path in three bands DRC. DRC3 is used for band pass frequency path in three bands DRC. DRC4 is used for the post DRC.

After AD87120 has reached the DRC threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable DRC threshold level. DRC threshold is defined by 28-bit presentation and is stored in RAM address 0X62, 0X66, 0X6A, 0X5E of RAM bank 0.

Publication Date: Nov. 2021 Revision: 0.7 90/103

The following table shows the DRC threshold's numerical representation. "T" is the threshold of DRC.

The equation is

$$T_{dB} = (T - 24)/6.0206(dB)$$

Ex: T=-6 db, TdB=(-6-24)/6.0206=-4.982892(dB)

T_{Dec}=-41799528

T_{Hex}=0XD823098

 $Vp=5*ANA_GAIN*[10^{(T+4)/20}]$

(Note. ANA_GAIN, please refer the setting to address 0X5E)

Sample calculation for DRC threshold

Dower	Davier T T-ID Desired	Dagimal	Hex	
Power	!	TdB Decimal		(5.23 format)
(Vp^2)/2R	-4	-4.65	-39012893	DACB5E3
	-7	-5.149	-43192845	D6CEDF3
	Х	(x-24)/6.0206	D=2^23*TdB	H=dec2hex(D)

DRC slope

The AD87120 DRC provides limiter and compressor. Using slope to decide compression factor. The relationship between the ratio R and the slope S is

$$S = 1 - \frac{1}{R}$$

$$R = \frac{1}{1 - S} = \frac{x - Threshold(dB)}{y - Threshold(dB)}$$

DRC slope is defined by 28bit and is stored in RAM address 0x63, 0x67, 0x6B, 0x6F

Ex: Setting DRC is limiter, S=1 ($R=\infty$).

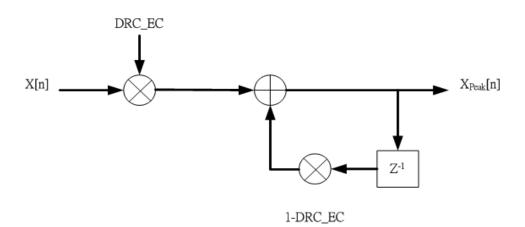
S_DEC=1*2^25 = 33554432

 $S_HEX = 0X2000000$

Publication Date: Nov. 2021 Revision: 0.7 91/103

Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 28-bit representation and is stored in RAM address 0X55 of RAM bank 0.


Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD87120 receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 28-bit representation and is stored in RAM address 0X56 of RAM bank 0. The following table shows the noise gate attack and release threshold level's numerical representation.

cample calculation for holes gate attack and release level				
Input amplitude	Linear	Decimal	Hex	
(dB)	Lilleai	Decimal	(1.27 format)	
0	1	134217712	7FFFF0	
-100	10 ⁻⁵	1328	530	
-110	10 ^{-5.5}	416	1A0	
х	L=10 ^(x/20)	D=134217712xL	H=dec2hex(D)	

Sample calculation for noise gate attack and release level

DRC Energy Coefficient

The above figure illustrates the digital processing of calculating Peak signal average. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Four sets of energy coefficients are provided and used for respective DRC. Energy coefficient is defined by 28-bit representation and is stored in RAM address 0X57, 0X58, 0X59, and 0X5A of RAM bank 0. The following table shows the DRC energy coefficient numerical representation.

Publication Date: Nov. 2021 Revision: 0.7 92/103

Sample calculation for DRC energy

coefficient

DRC energy	dB	Lincor	Decimal	Hex
coefficient	иь	Linear	Decimal	(1.27 format)
1	0	1	134217712	7FFFF0
1/256	-48.2	1/256	524288	80000
1/1024	-60.2	1/1024	131072	20000
L	х	L=10 ^(x/20)	D=134217712xL	H=dec2hex(D)

The user defined RAM

The contents of user defined RAM is represented in following table.

Ram Bank selection = 0

Address	NAME	Coefficient	Default	Format
0x00		CH1EQ1A1	0x0000000	3.25
0x01	1 st SET	CH1EQ1A2	0x0000000	3.25
0x02	Channel-1 EQ1	CH1EQ1B1	0x0000000	3.25
0x03	Chamler EQ1	CH1EQ1B2	0x0000000	3.25
0x04		CH1EQ1A0	0x2000000	3.25
0x05		CH1EQ2A1	0x0000000	3.25
0x06	1 st SET	CH1EQ2A2	0x0000000	3.25
0x07	Channel-1 EQ2	CH1EQ2B1	0x0000000	3.25
0x08	Chamler LQ2	CH1EQ2B2	0x0000000	3.25
0x09		CH1EQ2A0	0x2000000	3.25
0x0A		CH1EQ3A1	0x0000000	3.25
0x0B	1 st SET	CH1EQ3A2	0x0000000	3.25
0x0C	Channel-1 EQ3	CH1EQ3B1	0x0000000	3.25
0x0D	Channel-1 EQ3	CH1EQ3B2	0x0000000	3.25
0x0E		CH1EQ3A0	0x2000000	3.25
0x0F		CH1EQ4A1	0x0000000	3.25
0x10	1 st SET	CH1EQ4A2	0x0000000	3.25
0x11	Channel-1 EQ4	CH1EQ4B1	0x0000000	3.25
0x12	Channel-1 EQ4	CH1EQ4B2	0x0000000	3.25
0x13		CH1EQ4A0	0x2000000	3.25
0x14		CH1EQ5A1	0x0000000	3.25
0x15	1 st SET	CH1EQ5A2	0x0000000	3.25
0x16	Channel-1 EQ5	CH1EQ5B1	0x0000000	3.25
0x17		CH1EQ5B2	0x0000000	3.25

Publication Date: Nov. 2021 Revision: 0.7 93/103

0x18		CH1EQ5A0	0x2000000	3.25
0x19		CH1EQ6A1	0x0000000	3.25
0x1A	1 st SET Channel-1 EQ6	CH1EQ6A2	0x0000000	3.25
0x1B		CH1EQ6B1	0x0000000	3.25
0x1C		CH1EQ6B2	0x0000000	3.25
0x1D		CH1EQ6A0	0x2000000	3.25
0x1E		CH1EQ7A1	0x0000000	3.25
0x1F	1 st SET	CH1EQ7A2	0x0000000	3.25
0x20		CH1EQ7B1	0x0000000	3.25
0x21	Channel-1 EQ7	CH1EQ7B2	0x0000000	3.25
0x22		CH1EQ7A0	0x2000000	3.25
0x23		CH1EQ8A1	0x0000000	3.25
0x24	1 st SET	CH1EQ8A2	0x0000000	3.25
0x25	Channel-1 EQ8	CH1EQ8B1	0x0000000	3.25
0x26	Chamber EQ0	CH1EQ8B2	0x0000000	3.25
0x27		CH1EQ8A0	0x2000000	3.25
0x28		CH1EQ9A1	0x0000000	3.25
0x29	1 st SET Channel-1 EQ9	CH1EQ9A2	0x0000000	3.25
0x2A		CH1EQ9B1	0x0000000	3.25
0x2B		CH1EQ9B2	0x0000000	3.25
0x2C		CH1EQ9A0	0x2000000	3.25
0x2D		CH1EQ10A1	0x0000000	3.25
0x2E	1 st SET	CH1EQ10A2	0x0000000	3.25
0x2F	Channel-1 EQ10	CH1EQ10B1	0x0000000	3.25
0x30	Chaille-1 EQ10	CH1EQ10B2	0x0000000	3.25
0x31		CH1EQ10A0	0x2000000	3.25
0x32		CH1EQ11A1	0x0000000	3.25
0x33	1 st SET	CH1EQ11A2	0x0000000	3.25
0x34		CH1EQ11B1	0x0000000	3.25
0x35	Channel-1 EQ11	CH1EQ11B2	0x0000000	3.25
0x36		CH1EQ11A0	0x2000000	3.25
0x37		CH1EQ12A1	0x0000000	3.25
0x38	1 st ○ ⊑⊤	CH1EQ12A2	0x0000000	3.25
0x39	1 st SET Channel-1 EQ12	CH1EQ12B1	0x0000000	3.25
0x3A	Chaille-1 EQ12	CH1EQ12B2	0x0000000	3.25
0x3B		CH1EQ12A0	0x2000000	3.25
0x3C	1 st SET	CH1EQ13A1	0x0000000	3.25

Publication Date: Nov. 2021 Revision: 0.7 94/103

Ov3D	Channel 1 EQ12	CU1EO12A2	0×000000	3.25
0x3D	Channel-1 EQ13	CH1EQ13A2	0x0000000	
0x3E	(HPF in 3)	CH1EQ13B1	0x0000000	3.25
0x3F	-	CH1EQ13B2	0x0000000	3.25
0x40		CH1EQ13A0	0x2000000	3.25
0x41	_	CH1EQ14A1	0x0000000	3.25
0x42	1 st SET	CH1EQ14A2	0x0000000	3.25
0x43	Channel-1 EQ14	CH1EQ14B1	0x0000000	3.25
0x44	(LPF in type 1)	CH1EQ14B2	0x0000000	3.25
0x45		CH1EQ14A0	0x2000000	3.25
0x46		CH1EQ15A1	0x0000000	3.25
0x47	1 st SET	CH1EQ15A2	0x0000000	3.25
0x48	Channel-1 EQ15	CH1EQ15B1	0x0000000	3.25
0x49	Chamber EQ15	CH1EQ15B2	0x0000000	3.25
0x4A		CH1EQ15A0	0x2000000	3.25
0x4B		CH1EQ15A1	0x0000000	3.25
0x4C	4St OFT	CH1EQ15A2	0x0000000	3.25
0x4D	1 st SET	CH1EQ15B1	0x0000000	3.25
0x4E	Channel-1 EQ16	CH1EQ15B2	0x0000000	3.25
0x4F		CH1EQ15A0	0x2000000	3.25
0x50	Channel-1 Mixer1	M11	0x7FFFFF0	1.27
0x51	Channel-1 Mixer2	M12	0x0000000	1.27
0x52	Channel-1 Prescale	C1PRS	0x07e88e0	5.23
0x53	Channel-1 Postscale	C1POS	0x2000000	3.25
0x54	CH1.2 Power Clipping	PC1	0x2000000	3.25(last 1byte no used)
0x55	Noise Gate Attack Level	NGAL	0x00001A0	1.27(last 1byte no used)
0x56	Noise Gate Release Level	NGRL	0x0000530	1.27(last 1byte no used)
0x57	DRC1 Energy Coefficient	DRC1_EC	0x10000	1.27
0X58	DRC2 Energy Coefficient	DRC2_EC	0x10000	1.27
0x59	DRC3 Energy Coefficient	DRC3_EC	0x10000	1.27
0X5A	DRC4 Energy Coefficient	DRC4_EC	0x10000	1.27
0X5B	DRC1 Power Meter	C1_RMS	Read only	5.23
0X5C	DRC3 Power Meter	C3_RMS	Read only	5.23
0X5D	DRC5 Power Meter	C5_RMS	Read only	5.23
0X5E	DRC7 Power Meter	C7_RMS	Read only	5.23

Publication Date: Nov. 2021 Revision: 0.7 95/103

0x5F	Channel-1 DRC GAIN1	CH1DRCGAIN1	0x2000000	3.25
0x60	Channel-1 DRC GAIN2	CH1DRCGAIN2	0x2000000	3.25
0x61	Channel-1 DRC GAIN3	CH1DRCGAIN3	0xE000000	3.25
0X62	DRC1 FF threshold	DRC1TH	0xe01c070	5.23
0X63	DRC1 FF Slope	DRC1_Slope	0X200000	3.25
0X64	DRC1 FF aa	DRC1_AA	0X4000	3.25
0X65	DRC1 FF da	DRC1_DA	0X1000	3.25
0X66	DRC2 FF threshold	DRC2TH	0xe01c070	5.23
0X67	DRC2 FF Slope	DRC2_Slope	0X200000	3.25
0X68	DRC2 FF aa	DRC2_AA	0X4000	3.25
0X69	DRC2 FF da	DRC2_DA	0X1000	3.25
0X6A	DRC3 FF threshold	DRC3TH	0xe01c070	5.23
0X6B	DRC3 FF Slope	DRC3_Slope	0X200000	3.25
0X6C	DRC3 FF aa	DRC3_AA	0X4000	3.25
0X6D	DRC3 FF da	DRC3_DA	0X1000	3.25
0X6E	DRC4 FF threshold	DRC4TH	0xe01c070	5.23
0X6F	DRC4 FF Slope	DRC4_Slope	0X200000	3.25
0X70	DRC4 FF aa	DRC4_AA	0X4000	3.25
0X71	DRC4 FF da	DRC4_DA	0X1000	3.25
0X72	DRC1 GAIN	C1_GAIN	Read only	5.23
0X73	DRC3 GAIN	C3_GAIN	Read only	5.23
0X74	DRC5 GAIN	C5_GAIN	Read only	5.23
0X75	DRC7 GAIN	C7_GAIN	Read only	5.23
0X76	I2SO LCH GAIN	I2SO_L_GAIN	0X080000	5.23
0X77	SRS GAIN	SRS_GAIN	0X2000000	3.25

Ram Bank selection = 1

Address	NAME	Coefficient	Default	Format
0x00		CH2EQ1A1	0x0000000	3.25
0x01	1 st SET	CH2EQ1A2	0x0000000	3.25
0x02		CH2EQ1B1	0x0000000	3.25
0x03	Channel-2 EQ1	CH2EQ1B2	0x0000000	3.25
0x04		CH2EQ1A0	0x2000000	3.25
0x05	1 st SET	CH2EQ2A1	0x0000000	3.25
0x06	Channel-2 EQ2	CH2EQ2A2	0x0000000	3.25
0x07	Chamier-2 EQ2	CH2EQ2B1	0x0000000	3.25

Publication Date: Nov. 2021 Revision: 0.7 96/103

0x08		CH2EQ2B2	0x0000000	3.25
0x09		CH2EQ2A0	0x2000000	3.25
0x0A		CH2EQ3A1	0x0000000	3.25
0x0B	4 St OFT	CH2EQ3A2	0x0000000	3.25
0x0C	1 st SET	CH2EQ3B1	0x0000000	3.25
0x0D	Channel-2 EQ3	CH2EQ3B2	0x0000000	3.25
0x0E		CH2EQ3A0	0x2000000	3.25
0x0F		CH2EQ4A1	0x0000000	3.25
0x10	1 st SET	CH2EQ4A2	0x0000000	3.25
0x11		CH2EQ4B1	0x0000000	3.25
0x12	Channel-2 EQ4	CH2EQ4B2	0x0000000	3.25
0x13		CH2EQ4A0	0x2000000	3.25
0x14		CH2EQ5A1	0x0000000	3.25
0x15	1 st SET	CH2EQ5A2	0x0000000	3.25
0x16	Channel-2 EQ5	CH2EQ5B1	0x0000000	3.25
0x17	Chamer-2 EQ5	CH2EQ5B2	0x0000000	3.25
0x18		CH2EQ5A0	0x2000000	3.25
0x19		CH2EQ6A1	0x0000000	3.25
0x1A	1 st SET Channel-2 EQ6	CH2EQ6A2	0x0000000	3.25
0x1B		CH2EQ6B1	0x0000000	3.25
0x1C	Chamer-2 EQU	CH2EQ6B2	0x0000000	3.25
0x1D		CH2EQ6A0	0x2000000	3.25
0x1E		CH2EQ7A1	0x0000000	3.25
0x1F	1 st SET	CH2EQ7A2	0x0000000	3.25
0x20	Channel-2 EQ7	CH2EQ7B1	0x0000000	3.25
0x21	Chamer-2 EQ7	CH2EQ7B2	0x0000000	3.25
0x22		CH2EQ7A0	0x2000000	3.25
0x23		CH2EQ8A1	0x0000000	3.25
0x24	1 st SET	CH2EQ8A2	0x0000000	3.25
0x25	Channel-2 EQ8	CH2EQ8B1	0x0000000	3.25
0x26	OHAIIIGI-2 EQU	CH2EQ8B2	0x0000000	3.25
0x27		CH2EQ8A0	0x2000000	3.25
0x28		CH2EQ9A1	0x0000000	3.25
0x29	1 st SET	CH2EQ9A2	0x0000000	3.25
0x2A	Channel-2 EQ9	CH2EQ9B1	0x0000000	3.25
0x2B	OHAHHGE-Z LQ3	CH2EQ9B2	0x0000000	3.25
0x2C		CH2EQ9A0	0x2000000	3.25

Publication Date: Nov. 2021 Revision: 0.7 97/103

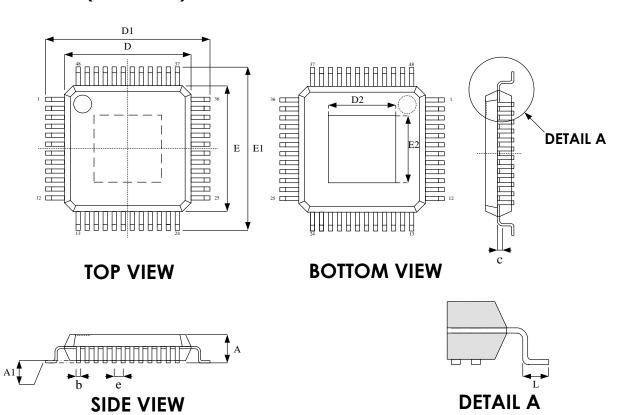
0x2D		CH2EQ10A1	0x0000000	3.25
0x2E	1 st SET Channel-2 EQ10	CH2EQ10A2	0x0000000	3.25
0x2F		CH2EQ10B1	0x0000000	3.25
0x30		CH2EQ10B2	0x0000000	3.25
0x31		CH2EQ10A0	0x2000000	3.25
0x32		CH2EQ11A1	0x0000000	3.25
0x33	4St OFT	CH2EQ11A2	0x0000000	3.25
0x34	1 st SET	CH2EQ11B1	0x0000000	3.25
0x35	Channel-2 EQ11	CH2EQ11B2	0x0000000	3.25
0x36		CH2EQ11A0	0x2000000	3.25
0x37		CH2EQ12A1	0x0000000	3.25
0x38	1 st SET	CH2EQ12A2	0x0000000	3.25
0x39	Channel-2 EQ12	CH2EQ12B1	0x0000000	3.25
0x3A	Channel-2 EQ12	CH2EQ12B2	0x0000000	3.25
0x3B		CH2EQ12A0	0x2000000	3.25
0x3C		CH2EQ13A1	0x0000000	3.25
0x3D	1 st SET	CH2EQ13A2	0x0000000	3.25
0x3E	Channel-2 EQ13	CH2EQ13B1	0x0000000	3.25
0x3F	Charmer-2 EQ13	CH2EQ13B2	0x0000000	3.25
0x40		CH2EQ13A0	0x2000000	3.25
0x41		CH2EQ14A1	0x0000000	3.25
0x42	1 st SET	CH2EQ14A2	0x0000000	3.25
0x43	Channel-2 EQ14	CH2EQ14B1	0x0000000	3.25
0x44	Chamer-2 EQ14	CH2EQ14B2	0x0000000	3.25
0x45		CH2EQ14A0	0x2000000	3.25
0x46		CH2EQ15A1	0x0000000	3.25
0x47	1 st SET	CH2EQ15A2	0x0000000	3.25
0x48		CH2EQ15B1	0x0000000	3.25
0x49	Channel-2 EQ15	CH2EQ15B2	0x0000000	3.25
0x4A		CH2EQ15A0	0x2000000	3.25
0x4B		CH1EQ15A1	0x0000000	3.25
0x4C	1 st SET	CH1EQ15A2	0x0000000	3.25
0x4D	Channel-2 EQ16	CH1EQ15B1	0x0000000	3.25
0x4E	Onaille-2 LQ10	CH1EQ15B2	0x0000000	3.25
0x4F		CH1EQ15A0	0x2000000	3.25
0x50	Channel-2 Mixer1	M21	0x0000000	1.27
0x51	Channel-2 Mixer2	M22	0x7FFFFF0	1.27

Publication Date: Nov. 2021 Revision: 0.7 98/103

0x52	Channel-2 Prescale	C2PRS	0x07e88e0	5.23
0x53	Channel-2 Postscale	C2POS	0x2000000	3.25
0x54	Reserved			
0X55	Reserved			
0X56	Reserved			
0X57	Reserved			
0X58	Reserved			
0x59	Reserved			
0x5A	Reserved			
0X5B	DRC2 Power Meter	C2_RMS	Read only	5.23
0X5C	DRC4 Power Meter	C4_RMS	Read only	5.23
0X5D	DRC6 Power Meter	C6_RMS	Read only	5.23
0X5E	DRC8 Power Meter	C8_RMS	Read only	5.23
0x5F	Channel-2 DRC GAIN1	CH2DRCGAIN1	0x2000000	3.25
0x60	Channel-2 DRC GAIN2	CH2DRCGAIN2	0x2000000	3.25
0x61	Channel-2 DRC GAIN3	CH2DRCGAIN3	0xE000000	3.25
0X62	Reserved			
0X63	Reserved			
0X64	Reserved			
0X65	Reserved			
0X66	Reserved			
0X67	Reserved			
0X68	Reserved			
0X69	Reserved			
0X6A	Reserved			
0X6B	Reserved			
0X6C	Reserved			
0X6D	Reserved			
0X6E	Reserved			
0X6F	Reserved			
0X70	Reserved			
0X71	Reserved			
0X72	DRC2 GAIN	C2_GAIN	Read only	5.23
0X73	DRC4 GAIN	C4_GAIN	Read only	5.23
0X74	DRC6 GAIN	C6_GAIN	Read only	5.23
0X75	DRC8 GAIN	C8_GAIN	Read only	5.23

Publication Date: Nov. 2021 Revision: 0.7 99/103

Preliminary


AD87120

0X76	I2SO RCH GAIN	I2SO_R_GAIN	0X0800000	5.23

Package Dimensions

• E-LQFP 48L (7mmx7mm)

Councile of	Dimension in mm		
Symbol	Min	Max	
А	-	1.60	
A1	0.05	0.15	
ь	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
е	0.50 BSC		
L	0.45	0.75	

Exposed pad

	Dimension in mm		
	Min	Max	
D2	4.31	5.21	
E2	4.31	5.21	

Publication Date: Nov. 2021 Revision: 0.7 101/103

Revision History

Revision	Date	Description
0.1	2020.9.14	Initial version.
		Modified PVDD under-voltage description
		2) Modified User-defined equalizer
0.2	2020.11.16	3) Modified Mixer
		4) Modified Pre-scale
		5) Update power on/off sequence
		Modify BCLK system description.
0.3	2020.01.04	Modify BCLK & MCLK system data.
		Modify Timing Relationship.
0.4	2021.05.24	Modify Power on / off Sequence.
0.5	2021.07.02	Modify Power on / off Sequence.
0.6	2021.08.23	Modify Power on / off Sequence.
		Modify Functional Block Diagram.
0.7	2021.11.12	Modify audio processing.
		Modify RAM access.

AD87120

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Nov. 2021 Revision: 0.7 103/103