

2x40W Stereo / 1x 80W Mono / 2x20W+1x40W 2.1CH Digital Audio Amplifier with 20 Bands EQ

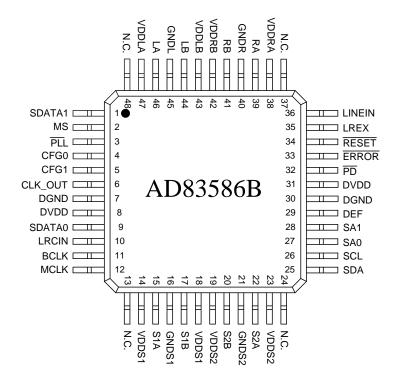
Features

- 16/18/20/24-bits input with I²S, Left-alignment and Right-alignment data format
- PSNR & DR (A-weighting)
 Stereo: 98dB (PSNR), 107dB (DR) @24V
- Multiple sampling frequencies (Fs) 32kHz / 44.1kHz / 48kHz and 64kHz / 88.2kHz / 96kHz and 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 64x~1024x Fs for 32kHz / 44.1kHz / 48kHz
 64x~512x Fs for 64kHz / 88.2kHz / 96kHz
 64x~256x Fs for 128kHz / 176.4kHz / 192kHz
- BCLK system supports
- Supply voltage
 3.3V for digital circuit
 7V~26V for loudspeaker driver
- Loudspeaker output power for stereo at 24V 40W x 2CH into 4Ω @0.22% THD+N
- Loudspeaker output power for mono at 24V 80W x 1CH into 4Ω @10% THD+N
- Loudspeaker output power for 2.1CH at 24V 20W x 2CH into 8Ω @0.25% THD+N 40W x 1CH into 4Ω @0.22% THD+N
- Sound processing including : 20 bands parametric speaker EQ Volume control (+24dB~-103dB, 0.125dB/step), Dynamic range control Dual Band Dynamic range control Power Clipping 3D surround sound Channel mixing Noise gate with hysteresis window Bass/Treble tone control Bass management crossover filter DC-blocking high-pass filter
- Power on reset
- Anti-pop design
- I²C control interface (without MCLK) with selectable device address
- Support hardware and software reset

- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Short-circuit and over-temperature protection
- Power saving mode
- Tunable surround sounds
- Support initial EEPROM setting

Applications

- CD and DVD
- TV audio
- Car audio
- Boom-box
- MP3 docking systems
- Powered speaker
- Wireless audio


Description

AD83586B is a digital audio amplifier capable of driving a pair of 8Ω , 20W plus a single 4Ω , 40W, or a pair of 4Ω , 40W or a single 4Ω , 60W speaker operating at 24V supply with proper cooling method.

AD83586B can provide advanced audio processing capabilities, such as volume control, 20 bands speaker EQ, audio mixing, 3D surround and Dynamic Range Control (DRC). These functions are fullv programmable via a simple I²C control interface. Robust protection circuits are provided to protect AD83586B from damage due to accidental erroneous operating condition. AD83586B is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog Class-AB or Class-D audio amplifier counterpart implemented by analog circuit design. AD83586B is pop free during instantaneous power switch because of its built-in, robust anti-pop circuit.

The output stage is flexibly configurable for 2.1 channel, stereo or mono applications. Furthermore, it is possible to use three pieces of AD83586B to realize 5.1 channels for home theater applications.

Pin Assignment

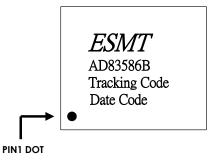
Pin Description

PIN	NAME	TYPE	DESCRIPTION	CHARACTERISTICS
1	SDATA1	I	Serial audio data input 1	Schmitt trigger TTL input buffer
2	MS	I	EEPROM selection	Schmitt trigger TTL input buffer
3	PLL	Ι	PLL enable, low active	Schmitt trigger TTL input buffer
4	CFG0	Ι	2.1 Ch/Stereo/Mono configuration pin	Schmitt trigger TTL input buffer
5	CFG1	I	2.1 Ch/Stereo/Mono configuration pin	Schmitt trigger TTL input buffer
6	CLK_OUT	I/O	PLL ratio setting pin during power up, this pin is monitored on the rising edge of reset. PMF register will be default set at 1 or 4 times PLL ratio by setting this pin at High or Low. High: PMF [3:0] = [0000], 1 time of PLL ratio to avoid system MCLK over flow. Low: PMF [3:0] = [0100], 4 times of PLL ratio. This pin could be clock output pin also during normal operating if EN_CLK_OUT register bit is enabled.	TTL output buffer, internal pull Low with an 80Kohm resistor.
7	DGND	Р	Digital Ground	
8	DVDD	Ρ	Digital Power	

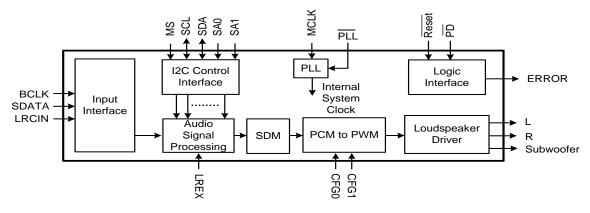
9	SDATA0	I	Serial audio data input 0	Schmitt trigger TTL input buffer
10	LRCIN	I	Left/Right clock input (Fs)	Schmitt trigger TTL input buffer
11	BCLK	I	Bit clock input (64Fs)	Schmitt trigger TTL input buffer
12	MCLK	I	Master clock input	Schmitt trigger TTL input buffer
13	N.C.			
14	VDDS1	Р	Subwoofer1 channel supply	
15	S1A	0	Subwoofer1 channel output A	
16	GNDS1	Р	Subwoofer1 channel ground	
17	S1B	0	Subwoofer1 channel output B	
18	VDDS1	Р	Subwoofer1 channel supply	
19	VDDS2	Р	Subwoofer2 channel supply	
20	S2B	0	Subwoofer2 channel output B	
21	GNDS2	Р	Subwoofer2 channel ground	
22	S2A	0	Subwoofer2 channel output A	
23	VDDS2	Р	Subwoofer2 channel supply	
24	N.C.			
25	SDA	I/O	I ² C bi-directional serial data	Schmitt trigger TTL input buffer
26	SCL	I/O	I ² C serial clock input	Schmitt trigger TTL input buffer
27	SA0	I	I ² C select address 0	Schmitt trigger TTL input buffer
28	SA1	I	I ² C select address 1	Schmitt trigger TTL input buffer
29	DEF	1	Initial default volume setting	Sobmitt trigger TTL input buffer
29	DEF		(1:Un-Mute ; 0:Mute)	Schmitt trigger TTL input buffer
30	DGND	Р	Digital Ground	
31	DVDD	Р	Digital Power	
32	PD	I	Power down, low active	Schmitt trigger TTL input buffer
33	ERROR	0	Error status, low active	Open-drain output
34	RESET	I	Reset, low active	Schmitt trigger TTL input buffer
25			Left/Right channel exchange	Cohmitt trigger TTL input huffer
35	LREX		(0:Unchanged ; 1:Exchanged)	Schmitt trigger TTL input buffer
			Select input data	Schmitt trigger TTL input buffer,
36	LINEIN	I	(0:SDATA0 ; 1:SDATA1)	internal pull Low with an 80Kohm
			(0.3DATAU, 1.3DATAT)	resistor.
37	N.C.			
38	VDDRA	Р	Right channel supply A	
39	RA	0	Right channel output A	
40	GNDR	Р	Right channel ground	
41	RB	0	Right channel output B	

42	VDDRB	Р	Right channel supply B	
43	VDDLB	Р	Left channel supply B	
44	LB	0	Left channel output B	
45	GNDL	Р	Left channel ground	
46	LA	0	Left channel output A	
47	VDDLA	Р	Left channel supply A	
48	N.C.			

Marking Information


AD83586B

Line 1 : LOGO


Line 2 : Product no.

Line 3 : Tracking Code

Line 4 : Date Code

Functional Block Diagram

Ordering Information

Product ID	Package	Packing / MPQ	Comments	
AD83586B-LG48NAY	E-LQFP-48L	250 Units / Tray	Green	
AD03300D-LG40INA I	7x7 mm	2.5K Units / Box (10 Tray)	Green	
	E-LQFP-48L	2k Units / reel	Croop	
AD83586B-LG48NAR	7x7 mm	1 reel / Box	Green	

Available Package

Package Type	Device No.	θ _{ja} (℃/W)	Ψ _{jt} (°C/W)	θ _{jt} (°C/W)	Exposed Thermal Pad
7x7 48L E-LQFP	AD83586B	27.4	1.33	34.9	Yes (Note1)

Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.

Note 1.2: θ_{ja} , the junction-to-ambient thermal resistance is simulated on a room temperature ($T_A=25$ °C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JESD51-5 thermal measurement standard.

Note 1.3: Ψ_{jt} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{ja} , using a procedure described in JESD51-2.

Note 1.4: θ_{jt} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.

Absolute Maximum Ratings

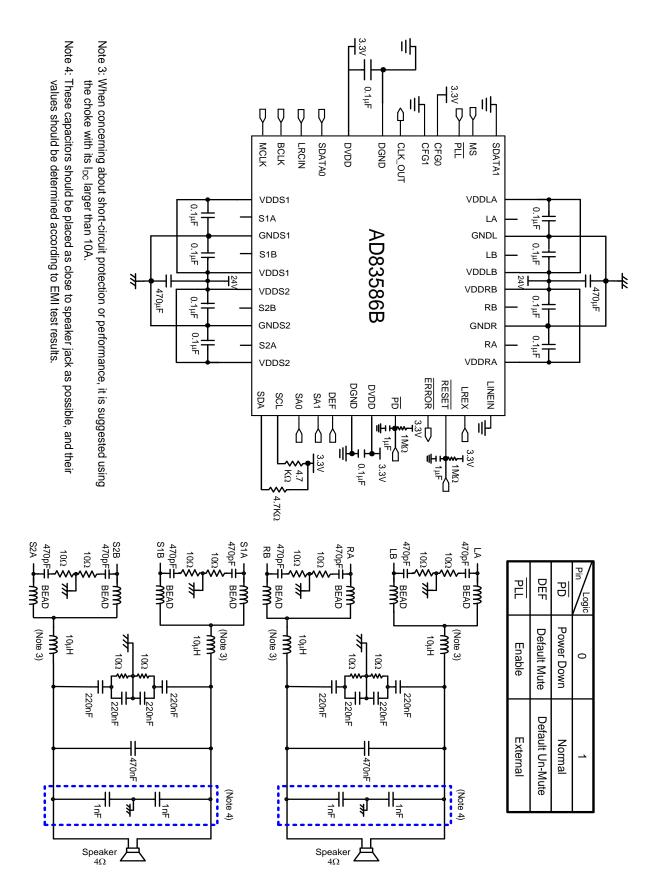
Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device.

Symbol	Parameter	Min	Max	Units
DVDD	Supply for Digital Circuit	-0.3	3.6	V
PVDD	Supply for Driver Stage (VDDL/VDDR/VDDS1/VDDS2)	-0.3	30	V
Vi	Input Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
TJ	Junction Operating Temperature	0	150	°C

Recommended Operating Conditions

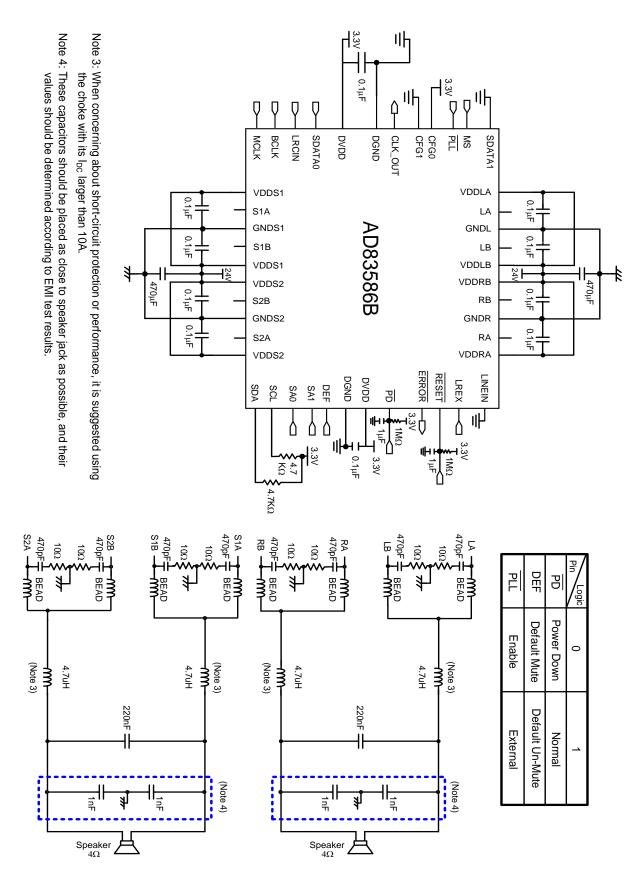
Symbol	Parameter	Тур	Units
DVDD	Supply for Digital Circuit	3.15~3.45	V
PVDD	Supply for Driver Stage (VDDL/VDDR/VDDS1/VDDS2)	7~26	V
TJ	Junction Operating Temperature	0~125	°C
T _A	Ambient Operating Temperature	0~70	°C

General Electrical Characteristics

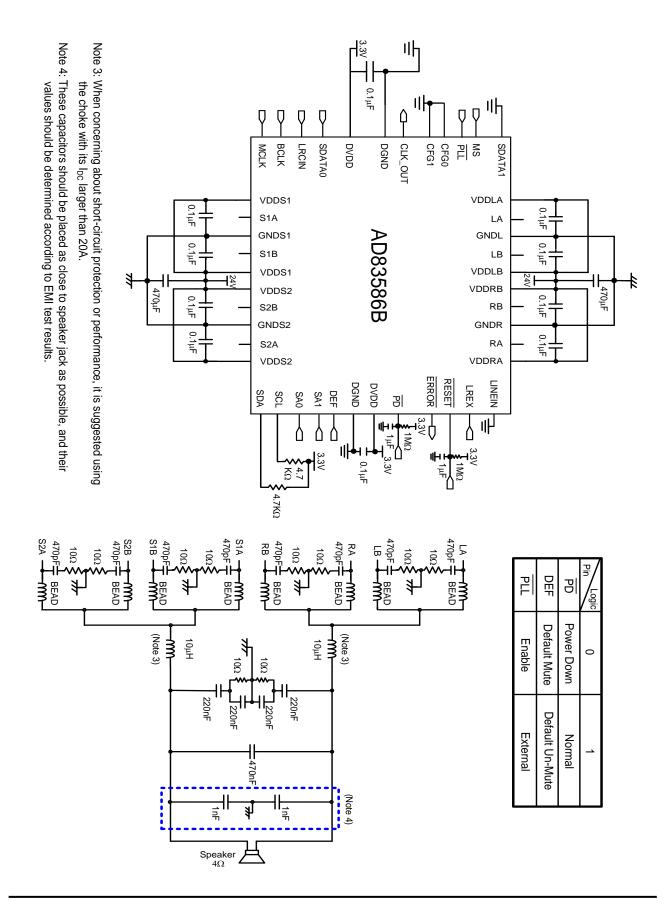

Condition: $T_A=25$ °C (unless otherwise specified).

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD} (HV)	PVDD Supply Current during Power Down	PVDD=24V			200	uA
I _{PD} (LV)	DVDD Supply Current during Power Down	DVDD=3.3V			10	uA
	PVDD Supply Operating Current during Mute	PVDD=24V		8		mA
I _Q (HV)	PVDD Supply Operating Current during Switching	FVDD=24V	1 1 3 1 2 2 2 2 2 2 2 2 2 1 2.0 2.4	37		mA
I _Q (LV)	DVDD Supply Operating Current	DVDD=3.3V		80		mA
т	Junction Temperature for Driver Shutdown			150		°C
T _{SENSOR}	Temperature Hysteresis for Recovery from Shutdown			30		°C
UV _H	Under Voltage Disabled (For DVDD)			2.8		V
UVL	Under Voltage Enabled (For DVDD)			2.7		V
Rds-on	Static Drain-to-Source On-state Resistor, PMOS	PVDD=24V,		270		mΩ
Rus-on	Static Drain-to-Source On-state Resistor, NMOS	Id=500mA	8 37 80 150 30 2.8 2.7 270 180 6 12 2.0		mΩ	
	BTL Channel Over-Current Protection (Note 2)	PVDD=24V		6		А
I _{SC}	PBTL Channel Over-Circuit Protection (Note 2)	PVDD=24V		12		А
V _{IH}	High-Level Input Voltage	DVDD=3.3V	2.0			V
V _{IL}	Low-Level Input Voltage	DVDD=3.3V			0.8	V
V _{OH}	High-Level Output Voltage	DVDD=3.3V	2.4			V
V _{OL}	Low-Level Output Voltage	DVDD=3.3V			0.4	V
Cı	Input Capacitance			6.4		pF

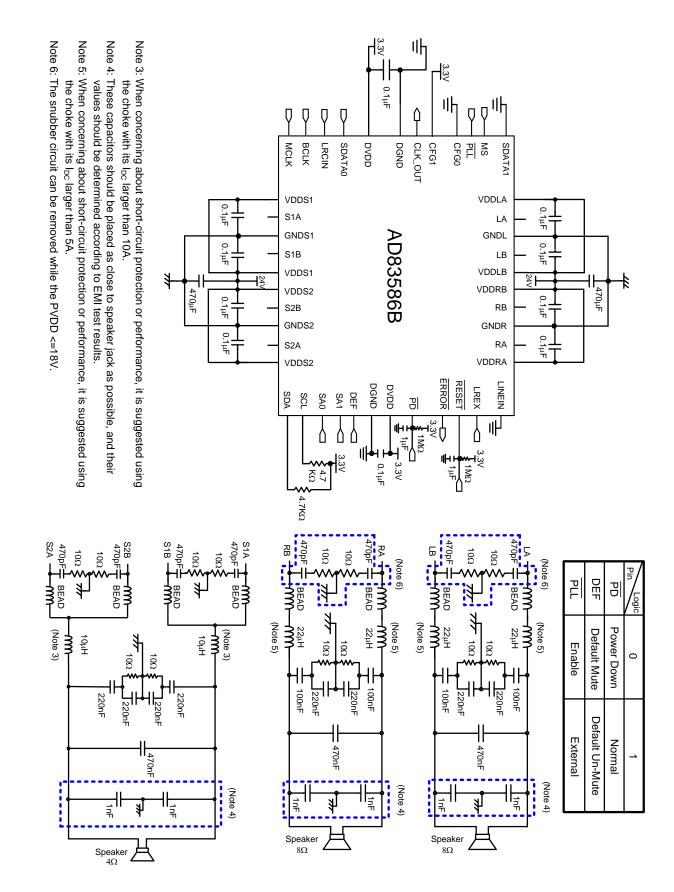
Note 2: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly

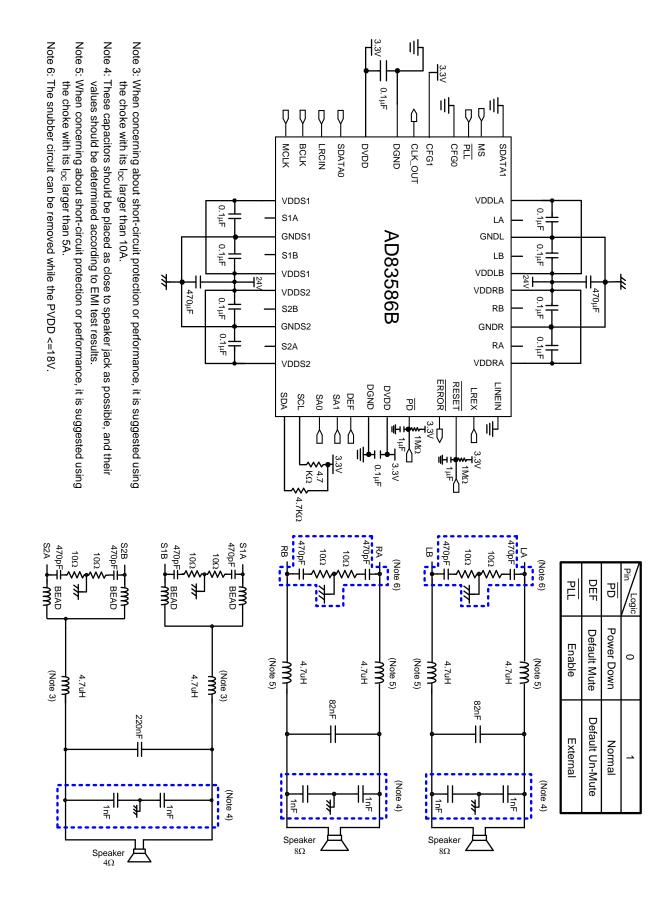

connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

Application Circuit Example for Stereo



Elite Semiconductor Microelectronics Technology Inc.

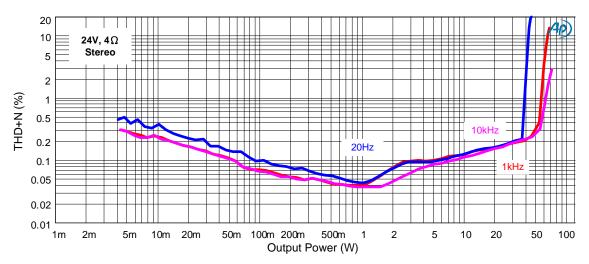

Application Circuit Example for Stereo (Economic type, moderate EMI suppression)


Application Circuit Example for Mono

Application Circuit Example for 2.1CH

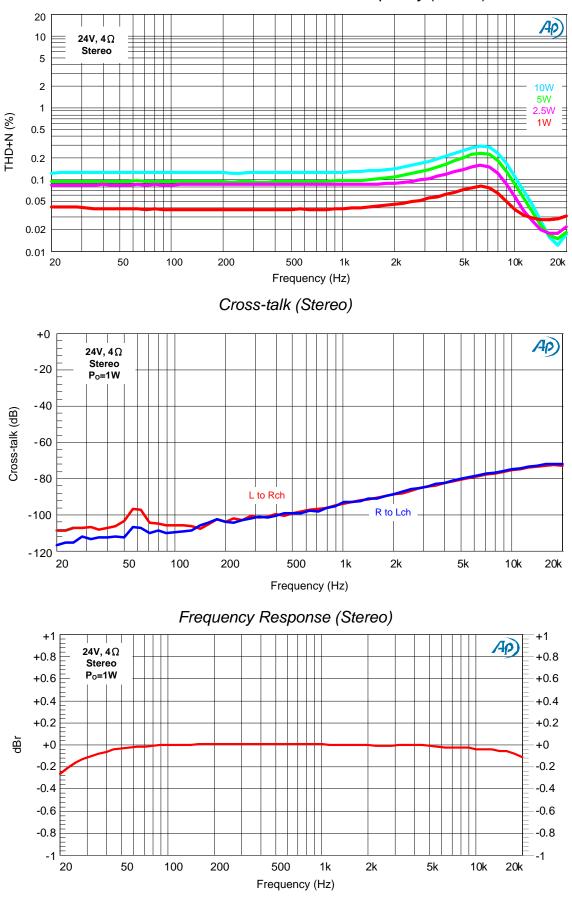
Application Circuit Example for 2.1CH (Economic type, moderate EMI suppression)

Electrical Characteristics and Specifications for Loudspeaker


• Stereo output (PBTL)

Condition: $T_A=25$ °C, DVDD =3.3V, PVDD=24V, $F_S=48$ kHz, Load=4 Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=27m\Omega$, C=470nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
Po	RMS Output Power (THD+N=0.22%)				40		W
(Note 8)	RMS Output Power (THD+N=0.17%)				25		W
THD+N	Total Harmonic Distortion + Noise	P _o =15W			0.15		%
SNR	Signal to Noise Ratio(Note 7)		-1dB		98		dB
DR	Dynamic Range(Note 7)		-60dB		106		dB
Vn	Output Noise (Note 7)	20Hz to 20kHz			150		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-80		dB
	Channel Separation	P _O =1W@1kHz			-84		dB


Note 7: Measured with A-weighting filter.

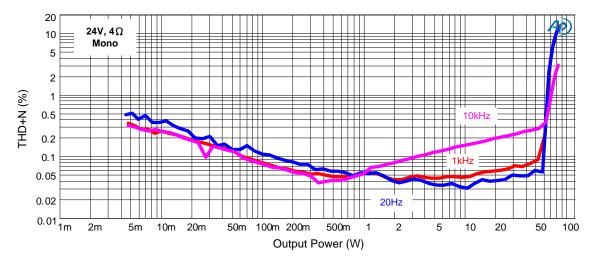
Note 8: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Total Harmonic Distortion + Noise vs. Output Power (Stereo)

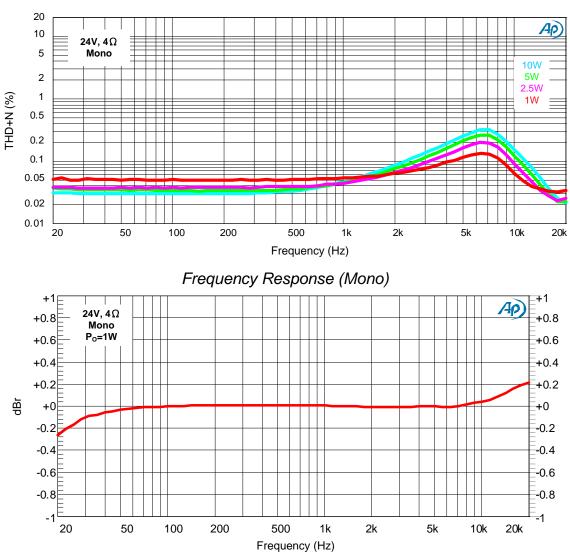
Total Harmonic Distortion + Noise vs. Frequency (Stereo)

Electrical Characteristics and Specifications for Loudspeaker (cont.)

• Mono output (two PBTL parallel)


Condition: $T_A=25$ °C, DVDD= 3.3V, PVDD=24V, $F_S=48$ kHz, Load=4 Ω with passive LC lowpass filter (L=10 μ H with $R_{DC}=27m\Omega$, C=470nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

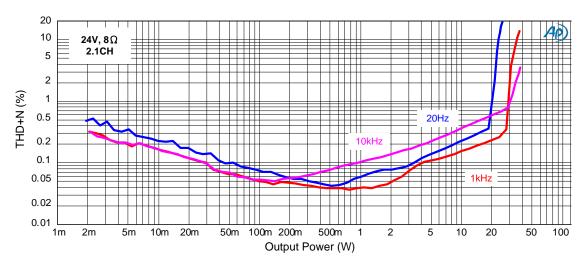
Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
P _O (Note 8)	RMS Output Power (THD+N=10%)				80		W
THD+N	Total Harmonic Distortion + Noise	P _o =25W			0.06		%
SNR	Signal to Noise Ratio(Note 7)		-1dB		97		dB
DR	Dynamic Range(Note 7)		-60dB		107		dB
Vn	Output Noise (Note 7)	20Hz to 20kHz			100		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			TBD		dB


Note 7: Measured with A-weighting filter.

Note 8: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Total Harmonic Distortion + Noise vs. Output Power (Mono)

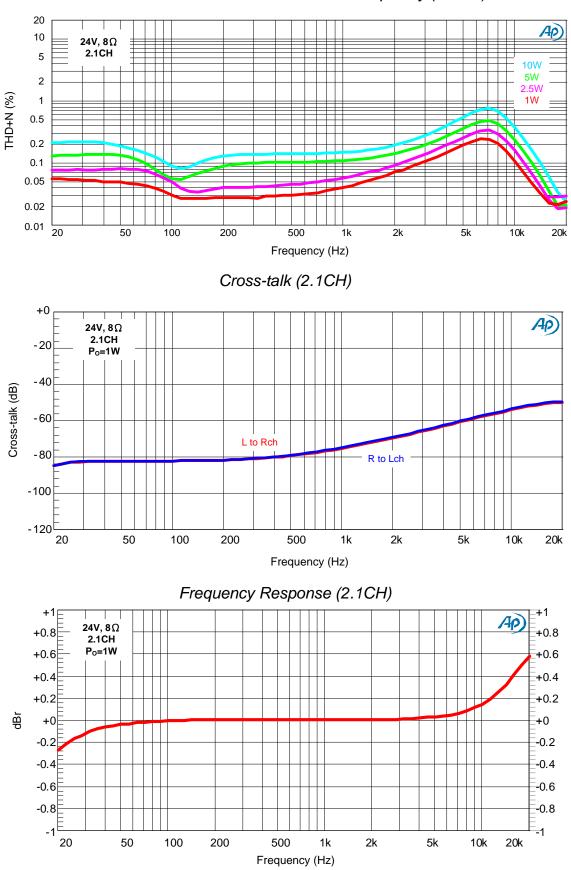
Total Harmonic Distortion + Noise vs. Frequency (Mono)

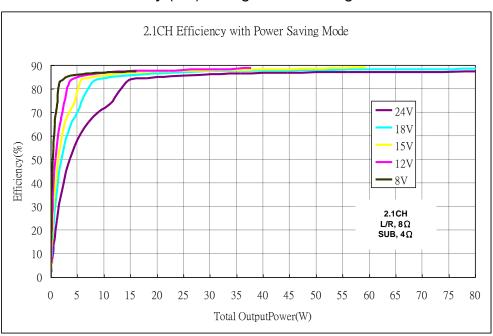

Electrical Characteristics and Specifications for Loudspeaker (cont.)

• 2.1CH output (BTL)

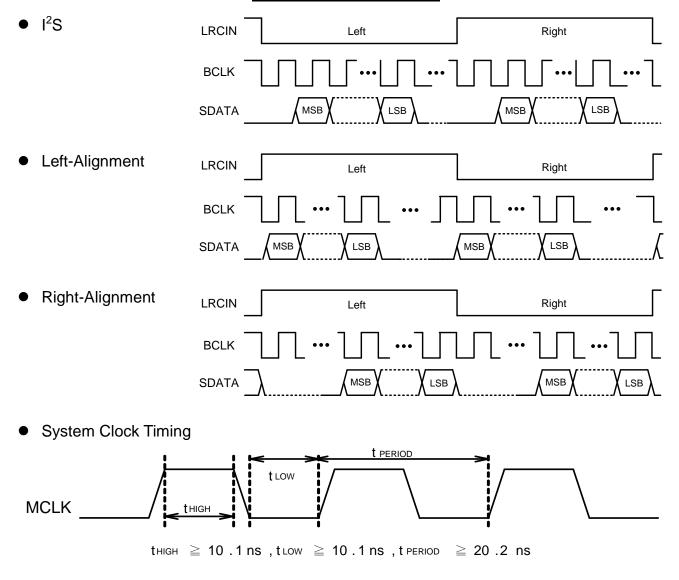
Condition: $T_A=25$ °C, DVDD= 3.3V, PVDD=24V, $F_S=48$ kHz, Load=8 Ω with passive LC lowpass filter (L=22 μ H with $R_{DC}=60m\Omega$, C=470nF); Input is 1kHz sinewave. Volume is 0dB unless otherwise specified.

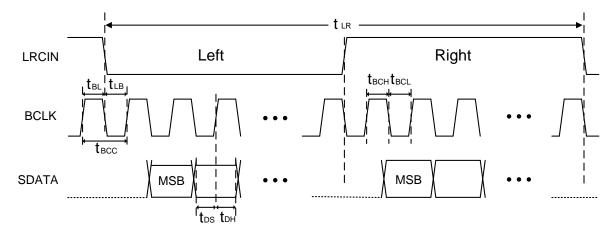
Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
P _O (Note 8)	RMS Output Power (THD+N=0.25%)				20		W
THD+N	Total Harmonic Distortion + Noise	P ₀ =7.5W			0.13		%
SNR	Signal to Noise Ratio(Note 7)		-1dB		96		dB
DR	Dynamic Range(Note 7)		-60dB		107		dB
Vn	Output Noise (Note 7)	20Hz to 20kHz			100		uV
PSRR	Power Supply Rejection Ratio	V _{RIPPLE} =1V _{RMS} at 1kHz			-76		dB
	Channel Separation	P _O =1W@1kHz			-75		dB


Note 7: Measured with A-weighting filter.

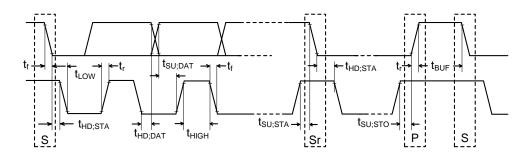

Total Harmonic Distortion + Noise vs. Output Power (2.1CH)

Note 8: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.


Total Harmonic Distortion + Noise vs. Frequency (2.1CH)


Efficiency (2.1) during Power Saving Mode

Interface configuration


• Timing Relationship (Using I²S format as an example)

Symbol	Parameter	Min	Тур	Max	Units
t _{LR}	LRCIN Period (1/F _s)	10.41		31.25	μs
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _s)	162.76		488.3	ns
t _{BCH}	BCLK Pulse Width High	81.38		244	ns
t _{BCL}	BCLK Pulse Width Low	81.38		244	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

• I²C Timing

		Standard Mode		Fast Mode		L los it
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time for repeated START condition	t _{HD,STA}	4.0		0.6		μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μs
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μS
Setup time for repeated START condition	t _{SU;STA}	4.7		0.6		μs
Hold time for I ² C bus data	t _{HD;DAT}	0	3.45	0	0.9	μs
Setup time for I_2C bus data	t _{SU;DAT}	250		100		Ns
Rise time of both SDA and SCL signals	tr		1000	20+0.1Cb	300	Ns
Fall time of both SDA and SCL signals	t _f		300	20+0.1Cb	300	Ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μS
Bus free time between STOP and the next	t _{BUF}	4.7		1.3		μS
START condition	ROF	4.7		1.5		μο
Capacitive load for each bus line	Cb		400		400	pF
Noise margin at the LOW level for each	V _{nL}	0.1V _{DD}		0.1V _{DD}		v
connected device (including hysteresis)		0.1VDD		U.IV _{DD}		v
Noise margin at the HIGH level for each	V _{nH}	0.2V _{DD}		0.2V _{DD}		V
connected device (including hysteresis)	V nH	0.2 V DD		0.2 v DD		v

Operation Description

Operation modes

(i) Without I²C control

The default settings, Bass, Treble, EQ, Volume, DRC, PLL, Subwoofer Bandwidth, ..., and Sub-woofer gain are applied to register table content when using AD83586B without I²C control. The more information about default settings, please refer to the highlighted column of register table section.

(ii) With I²C control

When using I^2C control, user can program suitable parameters into AD83586B for their specific applications. Please refer to the register table section to get the more detail.

• Internal PLL (PLL)

AD83586B has a built-in PLL with multiple MCLK/FS ratio, which is selected by I^2C control interface. If \overline{PLL} pin is pulled low, the built-in PLL is enabled; if \overline{PLL} pin is pulled high, an external clock source for MCLK less than 50MHz should be provided. The MCLK/FS ratio will be fixed at 1024x, 512x, or 256x with a sample frequency of 48kHz, 96kHz, or 192kHz respectively.

When using AD83586B without I^2C control interface, the operation is as follows.

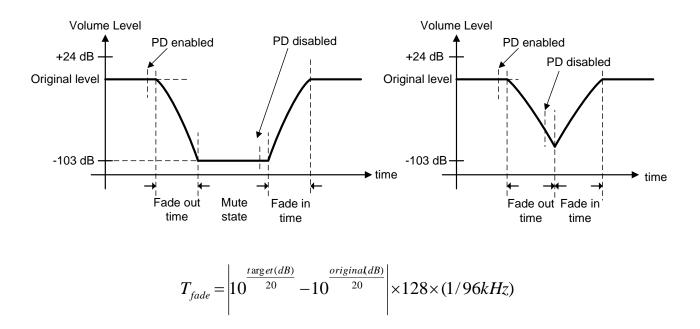
PLL pin is set to high:

Internal PLL is bypassed (Disable). The following master clock frequency is inputted into a MCLK pin by the sampling frequency. When the following master clock frequency cannot be inputted, \overline{PLL} pin is set low. A career clock frequency is the frequency divided by 128 of master clock.

Fs	MCLK Frequency
48kHz	49.152MHz
44.1kHz	45.158MHz
32kHz	32.768MHz

PLL pin is set to low:

Internal PLL is enabled. The master clock inputted into the MCLK pin becomes the frequency of quad edge evaluation. A career clock frequency is the frequency divided by 32 of master clock.


Reset

When the \overrightarrow{RESET} pin is lowered, AD83586B will clear the stored data and reset the register table to default values. AD83586B will exit reset state at the 256th MCLK cycle after the \overrightarrow{RESET} pin is raised to high.

Power down control

AD83586B has a built-in volume fade-in/fade-out design for PD/Mute function. The relative PD timing diagrams for loudspeakers are shown below.

The volume level will be decreased to -∞dB in several LRCIN cycles. Once the fade-out procedure is finished, AD83586B will turn off the power stages, stop clock signals (MCLK, BCLK) from feeding into digital circuit and turn off the current of the internal analog circuits. After PD pin is pulled low, AD83586B needs up to 510 LRCIN clocks to finish the above works before entering power down state. Users can't program AD83586B during power down state, but all the settings of register table will still be kept except that DVDD is removed.

If the PD function is disabled in the midway of the fade-out procedure, AD83586B will also execute the fade-in procedure. In addition, AD83586B will establish the analog circuits' bias current and feed the clock signals (MCLK, BCLK) into digital circuits. Then, AD83586B will return to its normal operation without power down.

Default volume (DEF)

The default volume of AD83586B is +1.675dB while DEF pin setting at high, the default volume can be muted by selecting DEF pin low. When using AD83586B without I²C control interface, users should pull this pin high. The default value of register table setting will be changed for different applications. About the more detailed information, please refer to the register table section.

• Self-protection circuits

AD83586B has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

- (i) When the internal junction temperature is higher than 150°C, power stages will be turned off and AD83586B will return to normal operation once the temperature drops to 120°C. The temperature values may vary around 10%.
- (ii) The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 6A for stereo configuration or less than 12A for mono configuration. Otherwise, the short-circuit detectors may pull the ERROR pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERROR pin will be pulled low and latched into ERROR state.

Once the over-temperature or short-circuit condition is removed, AD83586B will exit ERROR state when one of the following conditions is met: (1) $\overrightarrow{\text{RESET}}$ pin is pulled low, (2) $\overrightarrow{\text{PD}}$ pin is pulled low, (3) Master mute is enabled through the I²C interface.

- (iii) Once the DVDD voltage is lower than 2.7V, AD83586B will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When DVDD becomes larger than 2.8V, AD83586B will return to normal operation.
- (iv) If the master clock inputted into MCLK pin stops during the period for 500 ns or more, AD83586B detect the stop of MLCK. In this state, amplifier outputs are forced to Weak Low. If master clock is inputted normally again, ERROR pin is set to low. AD83586B won't leave ERROR state until one of the following conditions: (1) Reset pin is pulled low, (2) PD pin is pulled low, (3) Programming master mute via I²C interface. PD pin is recommended set to low, when stop the clock inputted into MCLK, BCLK, and LRCIN during operation.

• MS

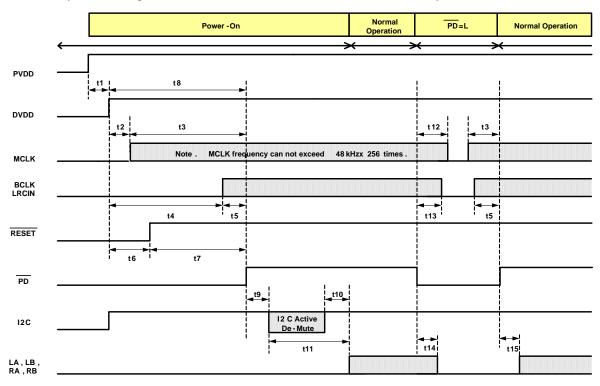
During system initialization, the content of this EEPROM can be loaded automatically into AD83586B registers and RAM when MS pin of AD83586B is set high. In other words, during initialization, for a short period of time (~76ms for MCLK=48kHzx256 and ~113ms for MCLK =32kHzx256 with PLL enable and PMF = 0100), AD83586B will behave like an IC master to fetch data from EEPROM content into registers and RAM automatically. After this is finished, AD83586B will become an I²C slave, waiting the master to send commands. When MS pin is set low, AD83586B will always behave like an I²C slave. Note that the size of the EEPROM shall be larger than 4Kb, such as Microchips' 24LC04B, because in total, there are 371 bytes of data. The first 256 bytes of data is stored from address 101000, and the last 115 bytes of data is stored from address 101001.

• LINEIN

When set LINEIN pin low, AD83586B will select I^2S data from SDATA0. On the contrary, AD83586B will select I^2S data from SDATA1when set LINEIN pin high. Before changing LINEIN pin status, users need to send I^2C signal to mute AD83586B to avoid pop sound.

• Anti-pop design

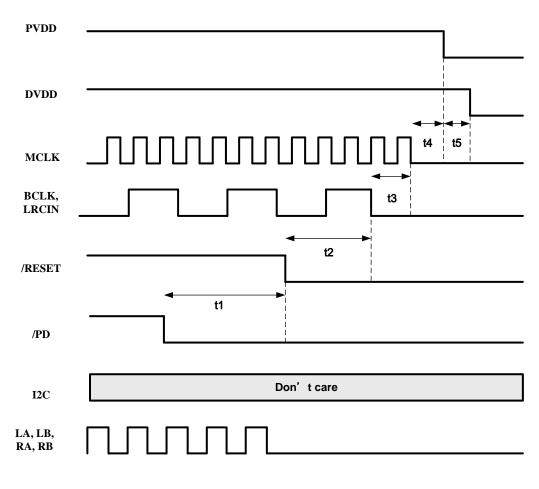
AD83586B will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.


3D surround sound

AD83586B provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

• Power on sequence

Hereunder is AD83586B's power on sequence. Please note that we suggested users set DEF pin at low state initially, and than give a de-mute command via I^2C when the whole system is stable.

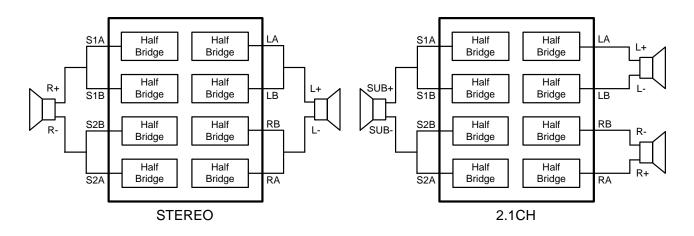


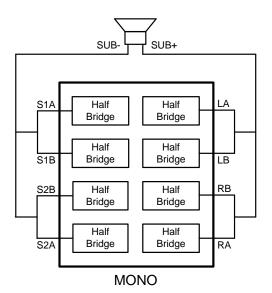
Symbol	Condition	Min	Max	Units
t1		0	-	msec
t2		0	-	msec
t3		10	-	msec
t4		0	-	msec
t5		10	-	msec
t6		10	-	msec
t7		0	-	msec
t8		200	-	msec
t9		20	-	msec
t10	DEF=L	-	0.1	msec
t11	DEF=H	-	0.1	msec
t12		25	-	msec
t13		25	-	msec
t14		-	22	msec
t15	DEF= L or H	-	0.1	msec

• Power off sequence

Hereunder is AD83586B's power off sequence.

Symbol	Condition	Min	Max	Units
t1		35	-	msec
t2		0.1	-	msec
t3		0	-	msec
t4		1	-	msec
t5		1	-	msec




• Output configuration

AD83586B can be configured to Stereo or Mono mode by the pin of CFG0. If 2.1channel configuration is required on your applications, you can select it from the pin of CFG1 to enable it.

CFG1	CFG0	Configuration Mode
0	0	Mono
0	1	Stereo
1	х	2.1 Channel

Configuration figures:

I²C-Bus Transfer Protocol

Introduction

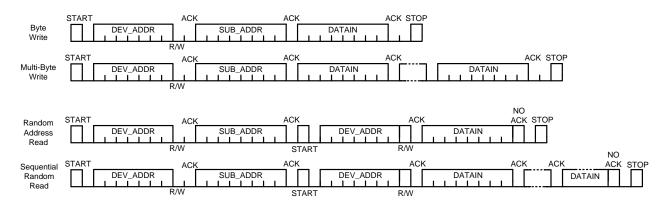
AD83586B employs I²C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. AD83586B is always an I²C slave device.

Protocol

START and STOP condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between AD83586B and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data validity


The SDA signal must be stable during the high period of the clock. The high or low change of SDA only occurs when SCL signal is low. AD83586B samples the SDA signal at the rising edge of SCL signal.

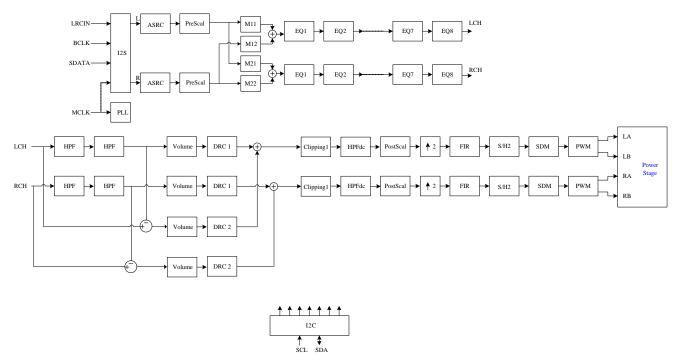
Device addressing

The master generates 7-bit address to recognize slave devices. When AD83586B receives 7-bit address matched with 0110x0y (where x and y can be selected by external SA0 and SA1 pins, respectively), AD83586B will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for AD83586B internal sub-addresses.

Data transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, AD83586B supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.


Publication Date: Sep. 2021 Revision: 1.7 28/62


Register Table

The AD83586B's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

Dual bands DRC disable,

Dual bands DRC enable,

Address	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	SCTL1	IF[2]	IF[1]	IF[0]		Reserved	Reserved		LREXC
0X01	SCTL2	Reserved	BCLK_SEL	FS[1]	FS[0]	PMF[3]	PMF[2]	PMF[1]	PMF[0]
0X02	SCTL3	EN_CLKO		Reserved		MMUTE	CM1	CM2	CM3
0X03	MVOL	MV[7]	MV[6]	MV[5]	MV[4]	MV[3]	MV[2]	MV[1]	MV[0]
0X04	C1VOL	C1V[7]	C1V[6]	C1V[5]	C1V[4]	C1V[3]	C1V[2]	C1V[1]	C1V[0]
0X05	C2VOL	C2V[7]	C2V[6]	C2V[5]	C2V[4]	C2V[3]	C2V[2]	C2V[1]	C2V[0]
0X06	C3VOL	C3V[7]	C3V[6]	C3V[5]	C3V[4]	C3V[3]	C3V[2]	C3V[1]	C3V[0]
0X07	BTONE		Reserved		BTC[4]	BTC[3]	BTC[2]	BTC[1]	BTC[0]
0X08	TTONE		Reserved		TTC[4]	TTC[3]	TTC[2]	TTC[1]	TTC[0]
0X09	XOF		Res	erved		XO[3]	XO[2]	XO[1]	XO[0]
0X0A	SCTL4	SRBP	BTE	DBDRCE	NGE	EQL	PSL	DSPB	HPB
0X0B	C1CFG		Res	erved		C1PCBP	C1DRCBP	C1HPFBP	C1VBP
0X0C	C2CFG		Res	erved		C2PCBP	C2DRCBP	C2HPFBP	C2VBP
0X0D	C3CFG		Res	erved		C3PCBP	C3DRCBP	C3HPFBP	C3VBP
0X0E	LAR	LA[3]	LA[2]	LA[1]	LA[0]	LR[3]	LR[2]	LR[1]	LR[0]
0X0F					Rese	erved			
0X10	ERDLY				Rese	erved			
0X11	SCTL5	Res	erved	SW_RSTB	LVUV_fade	Reserved	DIS_MCLK_DET	QT_EN	PWM_SEL
0X12	HVUV	DIS_HVUV		Reserved		HV_UVSEL [3]	HV_UVSEL [2]	HV_UVSEL [1]	HV_UVSEL [0]
0X13	SCTL6	Res	erved	D_MOD	DIS_NG_FAD	Rese	erved	NG_GAIN[1]	NG_GAIN[0]
0X14	CFADDR	Reserved	CFA[6]	CFA[5]	CFA[4]	CFA[3]	CFA[2]	CFA[1]	CFA[0]
0X15	A1CF1	C1B[23]	C1B[22]	C1B[21]	C1B[20]	C1B[19]	C1B[18]	C1B[17]	C1B[16]
0X16	A1CF2	C1B[15]	C1B[14]	C1B[13]	C1B[12]	C1B[11]	C1B[10]	C1B[9]	C1B[8]
0X17	A1CF3	C1B[7]	C1B[6]	C1B[5]	C1B[4]	C1B[3]	C1B[2]	C1B[1]	C1B[0]
0X18	A2CF1	C2B[23]	C2B[22]	C2B[21]	C2B[20]	C2B[19]	C2B[18]	C2B[17]	C2B[16]
0X19	A2CF2	C2B[15]	C2B[14]	C2B[13]	C2B[12]	C2B[11]	C2B[10]	C2B[9]	C2B[8]
0X1A	A2CF3	C2B[7]	C2B[6]	C2B[5]	C2B[4]	C2B[3]	C2B[2]	C2B[1]	C2B[0]
0X1B	B1CF1	C3B[23]	C3B[22]	C3B[21]	C3B[20]	C3B[19]	C3B[18]	C3B[17]	C3B[16]
0X1C	B1CF2	C3B[15]	C3B[14]	C3B[13]	C3B[12]	C3B[11]	C3B[10]	C3B[9]	C3B[8]
0X1D	B1CF3	C3B[7]	C3B[6]	C3B[5]	C3B[4]	C3B[3]	C3B[2]	C3B[1]	C3B[0]
0X1E	B2CF1	C4B[23]	C4B[22]	C4B[21]	C4B[20]	C4B[19]	C4B[18]	C4B[17]	C4B[16]
0X1F	B2CF2	C4B[15]	C4B[14]	C4B[13]	C4B[12]	C4B[11]	C4B[10]	C4B[9]	C4B[8]
0X20	B2CF3	C4B[7]	C4B[6]	C4B[5]	C4B[4]	C4B[3]	C4B[2]	C4B[1]	C4B[0]
0X21	A0CF1	C5B[23]	C5B[22]	C5B[21]	C5B[20]	C5B[19]	C5B[18]	C5B[17]	C5B[16]
0X22	A0CF2	C5B[15]	C5B[14]	C5B[13]	C5B[12]	C5B[11]	C5B[10]	C5B[9]	C5B[8]

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Sep. 2021 Revision: 1.7 30/62

0X23	A0CF3	C5B[7]	C5B[6]	C5B[5]	C5B[4]	C5B[3]	C5B[2]	C5B[1]	C5B[0]
0X24	CFUD	Res	erved	R3	W3	RA	R1	WA	W1
0X25	FDCFG				Rese	erved			
0X26	MBIST				Rese	erved			
0X27	Status				Rese	erved			
0X28	PWM_CTR				Poor	erved			
0720	L				Rese	erved			
0X29	TM_CTRL				Rese	erved			
0X2A	QT_SW_LEV	QT_SW_WINDOW	QT_SW_WINDOW	QT_SW_WINDOW	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL	QT_SW_LEVEL
0724	EL	[2]	[1]	[0]	[4]	[3]	[2]	[1]	[0]
0X2B	VFT	MV_FT[1]	MV_FT[1] MV_FT[0] C1V_FT[1] C1V_FT[0] C2V_FT[1] C2V_FT[0] C3V_FT[1] C3V_FT[0]						C3V_FT[0]
0X2C	OC_CTRL		Reserved						
0X2D	ID	DN[3]	DN[2]	DN[1]	DN[0]	VN[3]	VN[2]	VN[1]	VN[0]

Detail Description for Register

Note that the highlighted columns are default values of these tables. If there is no highlighted value, the default setting of this bit is determined by the external pin.

Address 0X00 : State control 1

AD83586B supports multiple serial data input formats including I²S, Left-alignment and Right-alignment. These formats is selected by users via bit7~bit5 of address 0X00. The left/right channels can be exchanged to each other by programming to bit0 of address 0X00, LREXC.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			000	I ² S 16-24 bits
			001	Left-alignment 16-24 bits
D[7·5]		Input Format	010	Right-alignment 16 bits
B[7:5]	IF[2:0]	Input Format	011	Right-alignment 18 bits
			100	Right-alignment 20 bits
			101	Right-alignment 24 bits
B[4]		Reserved		
B[3]		Reserved		
B[2]		Reserved		
D[1]	LV UVSEL	LV under voltage	0	2.7v
B[1]	LV_UVSEL	selection	1	3.0v
PI01	LREXC	Left/Right (L/R)	0	No exchanged
B[0]	LKEAU	Channel exchanged	1	L/R exchanged

Address 0X01 : State control 2

AD83586B has a built-in PLL which can be bypassed by pulling the PLL pin High. When PLL is bypassed, AD83586B only supports 1024x, 512x and 256x MCLK/Fs ratio for Fs is 32/44.1/48kHz, 64/88.2/96kHz, and 128/176.4/192kHz respectively. When PLL is enabled, multiple MCLK/Fs ratios are supported. Detail setting is shown in the following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
DIGI		MCLK-less	0	Disable
B[6]	BCLK_SEL	(BCLK system)	1	Enable
			00	32/44.1/48kHz
B[5:4]	FS[1:0]	FS[1:0] Sampling Frequency		64/88.2/96kHz
			1x	128/176.4/192kHz

Multiple MCLK/FS ratio setting table

BIT	NAME	DESCRIPTION	VALUE	B[5:4]=00	B[5:4]=01	B[5:4]=1x							
		MCLK/Fs setup when PLL is not bypassed		0000	1024x	512x	256x						
					0001	64x	64x	64x					
			0010	128x	128x	128x							
			0011	192x	192x	192x							
			setup when PLL is not	setup when	setup when					0100	Reset Default	Reset Default	Reset Default
B[3:0]	PMF[3:0]					0100	(256x)	(256x)	(256x)				
				0101	384x	384x							
				bypubbeu	bypaddda	Jpaccou	Sypabood	0110	512x	512x			
								l				0111	576x
			1000	768x	Reserved								
			1001	1024x									

• Address 0X02 : State control 3

AD83586B has mute function including master mute and channel mute. When master mute is enabled, all 3 processing channels are muted. User can mute these 3 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	EN_CLK_		0	Disabled
B[7]	OUT	PLL Clock Output	1	Enabled
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
D[3]	MUTE	Master Mute	0	All channel not muted
B[3]	NOTE	Master Mute	1	All channel muted
1010	CM1	Channel 1 Mute	0	Ch1 not muted
B[2]	CIVIT		1	Only Ch1 muted
D[1]	CM2	Channel 2 Mute	0	Ch2 not muted
B[1]	CIVIZ		1	Only Ch2 muted
PI01	СМЗ	Channel 3 Mute	0	Ch3 not muted
B[0]	CIVIS		1	Only Ch3 muted

• Address 0X03 : Master volume control

AD83586B supports both master-volume (Address 0X03) and channel-volume control (Address 0X04, 0X05 and 0X06) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00000000	+12.0dB
			00000001	+11.5dB
			00000010	+11.0dB
			:	:
)] Master Volume	00010111	+0.5dB
BIT[7:0]	MV[7:0]		00011000	0.0dB
ы [7.0]			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X04 : Channel 1 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
BIT[7:0]	C1V[7:0]	Channel1 Volume	00000000	+12.0dB
			0000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
			00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X05 : Channel 2 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
BIT[7:0]	C2V[7:0]	Channel2 Volume	00000000	+12.0dB
			00000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
			00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X06 : Channel 3 volume

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
BIT[7:0]	C3V[7:0]	Channel3 Volume	00000000	+12.0dB
			00000001	+11.5dB
			:	:
			00010100	+2dB
			:	:
			00011000	0.0dB
			00011001	-0.5dB
			:	:
			11100110	-103.0dB
			11100111	-∞dB
			:	:
			11111111	-∞dB

• Address 0X07/0X08 : Bass/Treble tone boost and cut

Last two sets of EQ can be programmed as bass/treble tone boost and cut. When, register with address 0X0A, bit-6, BTE is set to high, the EQ-7 and EQ-8 will perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ -12dB with 1dB per step.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:5]		Reserved		
			00000	+12dB
			00100	+12dB
			00101	+11dB
			00110	+10dB
			01110	+2dB
	BTC[4:0]	The gain setting	01111	+1dB
B[4:0]	/	of	10000	0dB
	TTC[4:0]	boost and cut	10001	-1dB
			10010	-2dB
			11010	-10dB
			11011	-11dB
			11100	-12dB
			11111	-12dB

• Address 0X09 : Bass management crossover frequency

The AD83586B provides bass management crossover frequency selection. A 1st order high-pass filter (channel 1 and 2) and a 2nd order low-pass filter (channel 3) at selected frequency are performed.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]		Reserved		
			0000	80Hz
			0001	100Hz
			0010	120Hz
			0011	140Hz
			0100	160Hz
			0101	180Hz
			0110	200Hz
D[2:0]	VOI201	Bass management	0111	300Hz
B[3:0]	XO[3:0]	crossover frequency	1000	400Hz
			1001	500Hz
			1010	600Hz
			1011	700Hz
			1100	800Hz
			1101	900Hz
			1110	1000Hz
			1111	

• Address 0X0A : State control 4

The AD83586B provides this register to configure the audio processing enable or bypass and channel link. The DC blocking high pass and EQ can be enabled of bypass. During the link bit is set to logic high, the post-scale scaling factor or EQ for all of channel can be mapped to channel-1. This provides much simple audio sound processing setup. A noise gate detection mute feature is built-in for AD83586B. If a channel receives 2048 consecutive samples smaller than noise gate level, then this channel is muted when the function is enabled.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7]	SRBP	Surround bypass	0	Surround enable
B[7]	SKDP	Surround bypass	1	Surround bypass
DICI	BTE	Bass/Treble Selection	0	Bass/Treble Disable
B[6]	DIE	bypass	1	Bass/Treble Enable
B[5]	DBDRCE	Dual Band DRC	0	Two Band DRC Disable
Б[3]	DBDRGE	Enable	1	Two Band DRC Enable
B[4]	NGE	Noise gate enable	0	Noise gate disable
D[4]	NGE	Noise gale enable	1	Noise gate enable
			0	Each channel uses individual EQ
B[3]	EQL	EQ Link	1	Channel-2 EQ equal to
			I	Channel-1 EQ
			0	Each channel uses individual
B[2]	PSL	Post-scale link	0	post-scale
			1	Use channel-1 post-scale
B[1]	DSPB	EQ bypass	0	EQ enable
			1	EQ bypass
B[0]	НРВ	DC blocking HPF	0	HPF DC blocking enable
D[0]		bypass	1	HPF DC blocking bypass

• Address 0X0B, 0X0C and 0X0D : Channel configuration registers

The AD83586B can configure each channel to enable or bypass DRC and channel volume and select the limiter set. AD83586B supports RMS DRC detection.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
B[5]		Reserved		
B[4]		Reserved		
B[3]	CxPCBP	Channel x Power	0	Channel x PC enable
Б[3]	CAPODP	Clipping bypass	1	Channel x PC bypass
B [3]		Channel x DRC bypass	0	Channel x DRC enable
B[2]	CADROBE		1	Channel x DRC bypass
		Channel x bass	0	Channel x HPF enable
B[1]	CxHPFBP	management HPF	1	Channel x HPF bypass
		bypass	I	Channel X HFF bypass
B[0]	CxVBP	Channel x Volume	0	Channel x's master volume operation
5[0]	CXVBP	bypass	1	Channel x's master volume bypass

Address 0X0B and 0X0C; where x=1 or 2

Address 0X0D

BIT	NAME	DESCRIPTION	VALUE	FUNCTION	
B[7]		Reserved			
B[6]		Reserved			
B[5]		Reserved			
B[4]		Reserved			
D [3]	C3PCBP	Channel 3 Power	0	Channel 3 PC enable	
B[3]	COPUDE	Clipping bypass	1	Channel 3 PC bypass	
DI01	C3DRCBP	Channel 2 DBC byrace	0	Channel 3 DRC enable	
B[2]	CODRUDP	Channel 3 DRC bypass	1	Channel 3 DRC bypass	
D[4]	C3HPFBP	Channel 3 bass	0	Channel 3 LPF enable	
B[1]	CONFEDE	management LPF bypass	1	Channel 3 LPF bypass	
B [0]		Channel 3 Volume	0	Channel 3 master volume operation	
B[0]	C3VBP	bypass	1	Channel 3 master volume bypass	

• Address 0X0E : DRC limiter attack/release rate

The AD83586B defines a set of limiter. The attack/release rates are defines as following table.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	3 dB/ms
			0001	2.667 dB/ms
			0010	2.182 dB/ms
			0011	1.846 dB/ms
			0100	1.333 dB/ms
			0101	0.889 dB/ms
			0110	0.4528 dB/ms
B[7:4]	LA[3:0]	DRC attack rate	0111	0.2264 dB/ms
D[7.4]	LA[3.0]		1000	0.15 dB/ms
			1001	0.1121 dB/ms
			1010	0.0902 dB/ms
			1011	0.0752 dB/ms
			1100	0.0645 dB/ms
			1101	0.0563 dB/ms
			1110	0.0501 dB/ms
			1111	0.0451 dB/ms
			0000	0.5106 dB/ms
			0001	0.1371 dB/ms
			0010	0.0743 dB/ms
			0011	0.0499 dB/ms
			0100	0.0360 dB/ms
			0101	0.0299 dB/ms
			0110	0.0264 dB/ms
B[3:0]	LR[3:0]	DRC release rate	0111	0.0208 dB/ms
Б[3.0]	LN[3.0]	DRC release rale	1000	0.0198 dB/ms
			1001	0.0172 dB/ms
			1010	0.0147 dB/ms
			1011	0.0137 dB/ms
			1100	0.0134 dB/ms
			1101	0.0117 dB/ms
			1110	0.0112 dB/ms
			1111	0.0104 dB/ms

Elite Semiconductor Microelectronics Technology Inc.

• Address 0X11 : State control 5

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6]		Reserved		
DIEI	SW_RSTB	Software reset	0	Reset
B[5]	300_6316	Soltware reset	1	Normal operation
P[4]	LVUV_FADE	LVUV fade	0	Disable
B[4]	LVUV_FADE		1	Enable
B[3]		Reserved		
DI01	DIS_MCLK_DET	Disable MCLK detect	0	Enable MCLK detect circuit
B[2]	DIS_WOLK_DET	circuit	1	Disable MCLK detect circuit
D[4]		Dower coving mode	0	Disable
B[1]	QT_EN	Power saving mode	1	Enable
B [0]		PWM modulation	0	Qua-ternary
B[0]	PWM_SEL		1	Ternary

• Address 0X12 : PVDD under voltage selection

AD83586B can enable HV under voltage detection via bit 7. AD83586B support multi-level HV under voltage detection via bit3~ bit0, using this function, AD83586B will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
P [7]	Dis_HVUV	Disable HV under	0	Enable
B[7]		voltage selection	1	Disable
			0000	8.2V
			0001	9.7V
P[2:0]		UV detection level	0011	13.2 V
B[3:0]	HV_UV SEL		0100	15.5 V
			1100	19.5 V
			Others	9.7V

ESMT

• Address 0X13 : State control 6

AD83586B provide a new modulation scheme, delta quaternary modulation which can be enable or not via bit5. Noise gate gain setting, user can change noise gate gain via bit1 ~ bit0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via bit 4.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]	Х	Reserved		
		Delta quaternary	0	Disable
B[5]	D_MOD	modulation	1	Enable
D[4]		Diachla naise gata fada	0	Fade
B[4]	DIS_NG_FADE	Disable noise gate fade-	1	No fade
B[3:2]	Х	Reserved		
			00	x1/8
B[1:0]	NG_GAIN[1:0]		01	x1/4
B[1:0]	B[1:0] NG_GAIN[1:0] Noise gate gain	10	x1/2	
			11	Mute

Address 0X14~0X24 : User-defined coefficients registers

An on-chip RAM in AD83586B stores user-defined EQ and mixing coefficients. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (address 0X14), five sets of registers (address 0X15 to 0X23) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (address 0X24) to control access of the coefficients in the RAM.

Address 0X14

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]		Reserved		
B[6:0]	CFA[6:0]	Coefficient RAM base	0000000	
5[0.0]		address	0000000	

Address 0X15, A1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	1 040102.461	Top 8-bits of		
Б[7.0] C1B[23:16]	coefficients A1		

Address 0X16, A1cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]		Middle 8-bits of		
B[7:0]	C1B[15:8]	coefficients A1		

Address 0X17, A1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	040[7:0]	Bottom 8-bits of		
B[7:0]	C1B[7:0]	coefficients A1		

Address 0X18, A2cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[23:16]	Top 8-bits of		
		coefficients A2		

Address 0X19, A2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[15:8]	Middle 8-bits of		
		coefficients A2		

Address 0X1A, A2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C2B[7:0]	Bottom 8-bits of		
		coefficients A2		

Address 0X1B, B1cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C3B[23:16]	Top 8-bits of		
		coefficients B1		

Address 0X1C, B1cf2

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0] C3B	C2D[15:0]	Middle 8-bits of		
		C3B[15:8]	coefficients B1		

Address 0X1D, B1cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C3B[7	02017-01	Bottom 8-bits of		
	C3B[7:0]	coefficients B1		

Address 0X1E, B2cf1

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0]	C4B[23:16]	Top 8-bits of		
			coefficients B2		

Address 0X1F, B2cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0] C4	C4B[15:8]	Middle 8-bits of		
		coefficients B2		

Address 0X20, B2cf3

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
D[7:0]	B[7:0] C4B[7:0]	Bottom 8-bits of		
B[1:0]		coefficients B2		

Address 0X21, A0cf1

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:0]	C5B[23:16]	Top 8-bits of		
		coefficients A0		

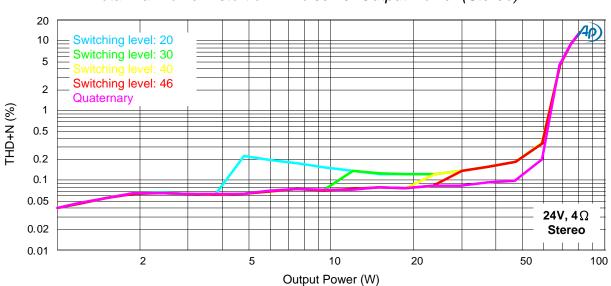
Address 0X22, A0cf2

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	CED[45:0]	Middle 8-bits of		
D[7:0]	B[7:0] C5B[15:8]	coefficients A0		

Address 0X23, A0cf3

	BIT	NAME	DESCRIPTION	VALUE	FUNCTION
	B[7:0]	C5B[7:0]	Bottom 8-bits of		
			coefficients A0		

Address 0X24, CfRW


BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:6]		Reserved		
		Enable of reading three	0	Read complete
B[5]	R3	address coefficients from		
		RAM	1	Read enable
		Enable of writing three	0	Write complete
B[4]	W3	address coefficients from		
		RAM	1	Write enable
1010	RA	Enable of reading a set of	0	Read complete
B[3]	КA	coefficients from RAM	1	Read enable
D [0]	R1	Enable of reading a single	0	Read complete
B[2]	κı	coefficients from RAM	1	Read enable
D[4]	WA	Enable of writing a set of	0	Write complete
B[1]	٧٧A	coefficients to RAM	1	Write enable
D[0]	W1	Enable of writing a single	0	Write complete
B[0]	VVI	coefficient to RAM	1	Write enable

• Address 0X2A : Power saving mode switching level

If the PWM exceeds the programmed switching power level (default 26*40ns), the modulation algorithm will change from quaternary into power saving mode. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level, the modulation algorithm will change back to quaternary modulation. If the PWM width is smaller than switching level minus switching window (default (26-5)*40ns), the modulation algorithm will leave from power saving mode into quaternary.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			111	9
			110	8
			101	7
D[7·6]		Switching window	100	6
B[7:5]	QT_SW_WINDOW	Switching window	011	5
			010	4
			001	3
			000	2
			11111	62
			11110	60
	QT_SW_LEVEL		:	:
			10000	32
B[4:0]		Switching level	01111	30
Б[4.0]		Switching level	01110	28
			01101	26
			:	:
			00001	4
			00000	4

Total Harmonic Distortion + Noise vs. Output Power (Stereo)

Total Harmonic Distortion + Noise vs. Output Power (2.1CH)

• Address 0X2B : Volume fine tune

AD83586B supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from $0dB \sim -0.375dB$ and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			00	0dB
DIZ:01		Master Volume Fine	01	-0.125dB
B[7:6]	MV_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
DIC: 41		Channel 1 Volume Fine	01	-0.125dB
B[5:4]	C1V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
012-21		Channel 2 Volume Fine	01	-0.125dB
B[3:2]	C2V_FT	Tune	10	-0.25dB
			11	-0.375dB
			00	0dB
D[1.0]		Channel 3 Volume Fine	01	-0.125dB
B[1:0]	C3V_FT	Tune	10	-0.25dB
			11	-0.375dB

• Address 0X2D : Device ID register

AD83586B has device ID which contains device number and version number.

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7:4]	DN	Device number	0010	Identification code
B[3:0]	VN	Version number	0000	Identification code

ESMT

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read a single coefficient from RAM:

- 1. Write 7-bits of address to I2C address 0X14
- 2. Write 1 to R1 bit in address 0X24
- 3. Read top 8-bits of coefficient in I2C address 0X15
- 4. Read middle 8-bits of coefficient in I2C address 0X16
- 5. Read bottom 8-bits of coefficient in I2C address 0X17

Read a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address 0X14
- 2. Write 1 to RA bit in address 0X24
- 3. Read top 8-bits of coefficient A1 in I2C address 0X15
- 4. Read middle 8-bits of coefficient A1in I2C address 0X16
- 5. Read bottom 8-bits of coefficient A1 in I2C address 0X17
- 6. Read top 8-bits of coefficient A2 in I2C address 0X18
- 7. Read middle 8-bits of coefficient A2 in I2C address 0X19
- 8. Read bottom 8-bits of coefficient A2 in I2C address 0X1A
- 9. Read top 8-bits of coefficient B1 in I2C address 0X1B
- 10. Read middle 8-bits of coefficient B1 in I2C address 0X1C
- 11. Read bottom 8-bits of coefficient B1 in I2C address 0X1D
- 12. Read top 8-bits of coefficient B2 in I2C address 0X1E
- 13. Read middle 8-bits of coefficient B2 in I2C address 0X1F
- 14. Read bottom 8-bits of coefficient B2 in I2C address 0X20
- 15. Read top 8-bits of coefficient A0 in I2C address 0X21
- 16. Read middle 8-bits of coefficient A0 in I2C address 0X22
- 17. Read bottom 8-bits of coefficient A0 in I2C address 0X23

Write a single coefficient from RAM:

- 1. Write 7-bits of address to I2C address 0X14
- 2. Write top 8-bits of coefficient in I2C address 0X15
- 3. Write middle 8-bits of coefficient in I2C address 0X16
- 4. Write bottom 8-bits of coefficient in I2C address 0X17
- 5. Write 1 to W1 bit in address 0X24

Write a set of coefficients from RAM:

- 1. Write 7-bits of address to I2C address 0X14
- 2. Write top 8-bits of coefficient A1 in I2C address 0X15
- 3. Write middle 8-bits of coefficient A1 in I2C address 0X16
- 4. Write bottom 8-bits of coefficient A1 in I2C address 0X17
- 5. Write top 8-bits of coefficient A2 in I2C address 0X18
- 6. Write middle 8-bits of coefficient A2 in I2C address 0X19
- 7. Write bottom 8-bits of coefficient A2 in I2C address 0X1A
- 8. Write top 8-bits of coefficient B1 in I2C address 0X1B
- 9. Write middle 8-bits of coefficient B1 in I2C address 0X1C
- 10. Write bottom 8-bits of coefficient B1 in I2C address 0X1D
- 11. Write top 8-bits of coefficient B2 in I2C address 0X1E
- 12. Write middle 8-bits of coefficient B2 in I2C address 0X1F
- 13. Write bottom 8-bits of coefficient B2 in I2C address 0X20
- 14. Write top 8-bits of coefficient A0 in I2C address 0X21
- 15. Write middle 8-bits of coefficient A0 in I2C address 0X22
- 16. Write bottom 8-bits of coefficient A0 in I2C address 0X23
- 17. Write 1 to WA bit in address 0X24

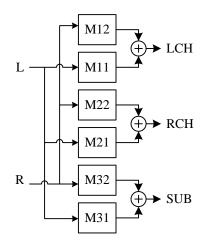
Note that: the read and write operation on RAM coefficients works only if LRCIN (pin-15) switching on rising edge. And, before each writing operation, it is necessary to read the address 0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

User-defined equalizer

The AD83586B provides 20 parametric Equalizer (EQ). Users can program suitable coefficients via I^2C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H(z) = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:


CHxEQyA0 = A0CHxEQyA1 = A1CHxEQyA2 = A2CHxEQyB1 = -B1CHxEQyB2 = -B2

Where *x* and *y* represents the number of channel and the band number of EQ equalizer.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

Mixer

The AD83586B provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFFF (0.9999998808). The function block diagram is as following:

• Pre-scale

For each audio channel, AD83586B can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the pre-scaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

Post-scale

The AD83586B provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

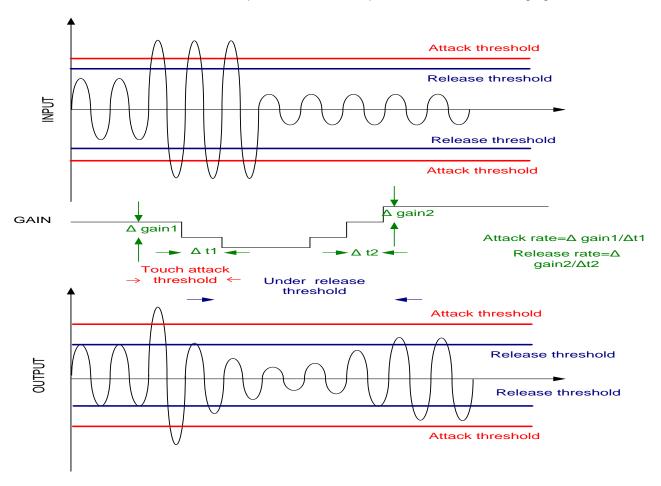
• Power Clipping

The AD83586B provides power clipping function to avoid excessive signal that may destroy loud speaker. Two sets of power clipping are provided. One is used for both channel 1 and channel 2, while the other is used for channel 3. The power clipping level is defined by 24-bit representation and is stored in RAM address 0X6F and 0X70. The following table shows the power clipping level's numerical representation.

Max	dB	Linear	Decimal	Hex	
amplitude	uв	Linear	Decimal	(3.21 format)	
PVDD	0	1	2097152	200000	
PVDD*0.707	-3	0.707	1482686	169FEB	
PVDD*0.5	-6	0.5	1048576	100000	
PVDD*L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)	

Sample	calculation	for powe	r clipping
--------	-------------	----------	------------

• Attack threshold


The AD83586B provides power limited function. When the input exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Two sets of power limit are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Attack threshold is defined by 24-bit representation and is stored in RAM address 0X71 and 0X72.

• Release threshold

After AD83586B has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Two sets of power limit are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Release threshold is defined by 24-bit representation and is stored in RAM address 0X73 and 0X74. The following table shows the attack and release threshold's numerical representation.

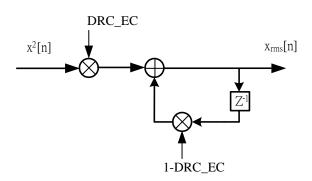
Power	dB	Linear	Decimal	Hex
Fower	uБ	Linear	Decimal	(3.21 format)
(PVDD^2)/R	0	1	2097152	200000
(PVDD^2)/2R	-3	0.5	1048576	100000
(PVDD^2)/4R	-6	0.25	524288	80000
((PVDD^2)/R)*L	х	L=10 ^(x/10)	D=2097152xL	H=dec2hex(D)

Sample calculation for attack and release threshold

To best illustrate the power limit function, please refer to the following figure.

Noise Gate Attack Level

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24-bit representation and is stored in RAM address 0X75.


Noise Gate Release Level

After entering the noise gating status, the noise gain will be removed whenever AD83586B receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X76. The following table shows the noise gate attack and release threshold level's numerical representation.

Input amplitude	Lincor	Desimal	Hex
(dB)	Linear	Decimal	(1.23 format)
0	1	8388607	7FFFF
-100	10 ⁻⁵	83	53
-110	10 ^{-5.5}	26	1A
x	L=10 ^(x/20)	D=8388607xL	H=dec2hex(D)

Sample calculation for noise gate attack and release level

DRC Energy Coefficient

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Two sets of energy coefficients are provided. One is used of channel 1 and channel 2, while the other is used for channel3. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X77 and 0X78. The following table shows the DRC energy coefficient numerical representation.

DRC energy	dB	Linear	Decimal	Hex
coefficient	5		20011101	(1.23 format)
1	0	1	8388607	7FFFF
1/256	-48.2	1/256	32768	8000
1/1024	-60.2	1/1024	8192	2000
L	х	L=10 ^(x/20)	D=2097152xL	H=dec2hex(D)

Sample calculation for DRC energy coefficient

• The user defined RAM

The contents of user defined RAM is represented in following table.

Address	NAME	Coefficient	Default
0x00		CH1EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000
0x02	Channel-1 EQ1	CH1EQ1B1	0x000000
0x03		CH1EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000
0x06		CH1EQ2A2	0x000000
0x07	Channel-1 EQ2	CH1EQ2B1	0x000000
0x08		CH1EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000
0x0A		CH1EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000
0x0C	Channel-1 EQ3	CH1EQ3B1	0x000000
0x0D		CH1EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000
0x10		CH1EQ4A2	0x000000
0x11	Channel-1 EQ4	CH1EQ4B1	0x000000
0x12		CH1EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000
0x15		CH1EQ5A2	0x000000
0x16	Channel-1 EQ5	CH1EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000
0x18		CH1EQ5A0	0x200000
0x19		CH1EQ6A1	0x000000
0x1A		CH1EQ6A2	0x000000
0x1B	Channel-1 EQ6	CH1EQ6B1	0x000000
0x1C		CH1EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000
0x1E		CH1EQ7A1	0x000000
0x1F	Channel-1 EQ7	CH1EQ7A2	0x000000
0x20		CH1EQ7B1	0x000000

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Sep. 2021 Revision: 1.7 56/62

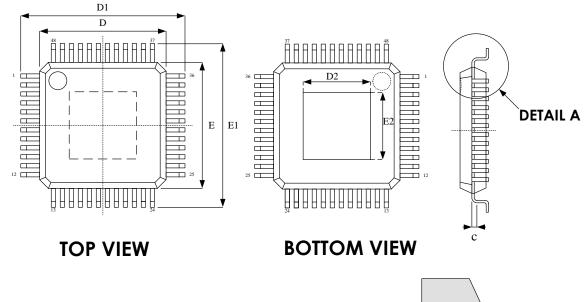
0x21		CH1EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000
0x24		CH1EQ8A2	0x000000
0x25	Channel-1 EQ8	CH1EQ8B1	0x000000
0x26		CH1EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000
0x28		CH1EQ9A1	0x000000
0x29		CH1EQ9A2	0x000000
0x2A	Channel-3 EQ1	CH1EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000
0x2D		CH3EQ1A1	0x000000
0x2E		CH3EQ1A2	0x000000
0x2F	Channel-3 EQ3	CH3EQ1B1	0x000000
0x30		CH3EQ1B2	0x000000
0x31		CH3EQ1A0	0x200000
0x32		CH2EQ1A1	0x000000
0x33		CH2EQ1A2	0x000000
0x34	Channel-2 EQ1	CH2EQ1B1	0x000000
0x35		CH2EQ1B2	0x000000
0x36		CH2EQ1A0	0x200000
0x37		CH2EQ2A1	0x000000
0x38		CH2EQ2A2	0x000000
0x39	Channel-2 EQ2	CH2EQ2B1	0x000000
0x3A		CH2EQ2B2	0x000000
0x3B		CH2EQ2A0	0x200000
0x3C		CH2EQ3A1	0x000000
0x3D		CH2EQ3A2	0x000000
0x3E	Channel-2 EQ3	CH2EQ3B1	0x000000
0x3F		CH2EQ3B2	0x000000
0x40		CH2EQ3A0	0x200000
0x41		CH2EQ4A1	0x000000
0x42		CH2EQ4A2	0x000000
0x43	Channel-2 EQ4	CH2EQ4B1	0x000000
0x44		CH2EQ4B2	0x000000
0x45		CH2EQ4A0	0x200000

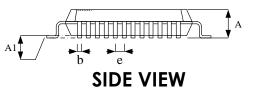
Elite Semiconductor Microelectronics Technology Inc.

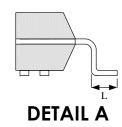
			
0x46		CH2EQ5A1	0x000000
0x47		CH2EQ5A2	0x000000
0x48	Channel-2 EQ5	CH2EQ5B1	0x000000
0x49		CH2EQ5B2	0x000000
0x4A		CH2EQ5A0	0x200000
0x4B		CH2EQ6A1	0x000000
0x4C		CH2EQ6A2	0x000000
0x4D	Channel-2 EQ6	CH2EQ6B1	0x000000
0x4E		CH2EQ6B2	0x000000
0x4F		CH2EQ6A0	0x200000
0x50		CH2EQ7A1	0x000000
0x51		CH2EQ7A2	0x000000
0x52	Channel-2 EQ7	CH2EQ7B1	0x000000
0x53		CH2EQ7B2	0x000000
0x54		CH2EQ7A0	0x200000
0x55		CH2EQ8A1	0x000000
0x56		CH2EQ8A2	0x000000
0x57	Channel-2 EQ8	CH2EQ8B1	0x000000
0x58		CH2EQ8B2	0x000000
0x59		CH2EQ8A0	0x200000
0x5A		CH2EQ9A1	0x000000
0x5B		CH2EQ9A2	0x000000
0x5C	Channel-3 EQ2	CH2EQ9B1	0x000000
0x5D		CH2EQ9B2	0x000000
0x5E		CH2EQ9A0	0x200000
0x5F		CH3EQ2A1	0x000000
0x60		CH3EQ2A2	0x000000
0x61	Channel-3 EQ4	CH3EQ2B1	0x000000
0x62		CH3EQ2B2	0x000000
0x63		CH3EQ2A0	0x200000
0x64	Channel-1 Mixer1	M11	0x7FFFFF
0x65	Channel-1 Mixer2	M12	0x000000
0x66	Channel-2 Mixer1	M21	0x000000
0x67	Channel-2 Mixer2	M22	0x7FFFFF
0x68	Channel-3 Mixer1	M31	0x400000
0x69	Channel-3 Mixer2	M32	0x400000
0x6A	Channel-1 Prescale	C1PRS	0x7FFFFF
0,0,1			

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Sep. 2021 Revision: 1.7 58/62




0x6B	Channel-2 Prescale	C2PRS	0x7FFFFF
0x6C	Channel-1 Postscale	C1POS	0x7FFFFF
0x6D	Channel-2 Postscale	C2POS	0x7FFFF
0x6E	Channel-3 Postscale	C3POS	0x7FFFFF
0x6F	CH1.2 Power Clipping	PC1	0x200000
0x70	CH3 Power Clipping	PC2	0x200000
0x71	CH1.2 DRC Attack threshold	DRC1_ATH	0x200000
0x72	CH1.2 DRC Release threshold	DRC1_RTH	0x80000
0x73	CH3 DRC Attack threshold	DRC2_ATH	0x200000
0x74	CH3 DRC Release threshold	DRC2_RTH	0x80000
0x75	Noise Gate Attack Level	NGAL	0x00001A
0x76	Noise Gate Release Level	NGRL	0x000053
0x77	DRC1 Energy Coefficient	DRC1_EC	0x8000
0X78	DRC2 Energy Coefficient	DRC2_EC	0x2000
0X79	A0 of SRS HPF	SRSH_A0	C7B691
0X7A	A1 of SRS HPF	SRSH_A1	38496E
0X7B	B1 of SRS HPF	SRSH_B1	C46f8
0X7C	A0 of SRS LPF	SRSL_A0	E81B9
0X7D	A1 of SRS LPF	SRSL_A1	F22C12
0X7E	B1 of SRS LPF	SRSL_B1	FCABB



Package Dimensions

• E-LQFP 48L (7x7mm)

Course la cal	Dimension in mm		
Symbol	Min	Max	
А		1.60	
A1	0.05	0.15	
b	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
e	0.50 BSC		
L	0.45	0.75	

Exposed pad				
	Dimension in mm			
	Min	Max		
D2	4.31	5.21		
E2	4.31	5.21		

Revision History

Revision	Date	Description	
0.1	2014.12.17	Original.	
0.2	2015.02.03	 Modify Output Power for 2.0, 2.1 and mono. Modify the Description of DRC Detection. 	
1.0	2015.03.04	Remove preliminary word and modify version to 1.0	
1.1	2015.09.25	New add "tape reel "packing information	
1.2	2016.06.29	Modify order information	
1.3	2016.09.01	Modify order information	
1.4	2020.05.04	Update Application Circuit Example for Stereo, Mono and 2.1CH.	
1.5	2021.01.26	Update the characteristics of pin 36 in the Pin Description.	
1.6	2021.04.14	Modify the mono configuration figure.	
1.7	2021.09.07	Modify the Application Circuit Example for Stereo, Mono and 2.1 CH.	

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.