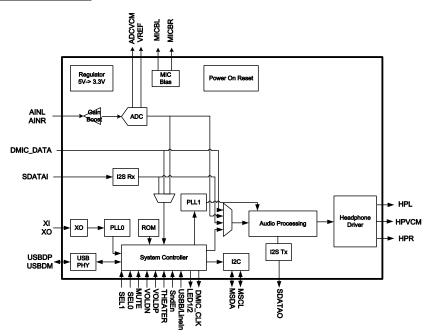


USB Audio Controller with Headphone Driver & with Microphone/Line-in Interface

Features


- Compliant with USB Specification v1.1, and USB 2.0 full speed
- Compliant with USB 3.0 super speed operation
- Embedded stereo ADC with Microphone Boost
- Embedded Power-On-Reset circuit
- Embedded Headphone driver
- Support I2S input (master and slave mode) and I2S output interface (master mode)
- Support sampling frequency 44.1/48kHz for playback and recording
- Pin to set recording source from internal ADC or external ADC
- Pin to set Headphone mode or I2S output mode
- Support Microphone and line-in function switching
- Support volume/mute control with external button
- LED indicator function for playback, mute and recording mute
- Support 3D surround sound
- Support Microphone bias
- Support Digital microphone interface for recording
- Power Clipping function for speaker protection
- External EEPROM interface for vendor specific and hardware configuration via I2C
- I2S input port allows AD62556 to receive ESMT's high performance ADC(i.e. AD12250)

- I2S output port allows AD62556 to control ESMT's high performance audio devices (i.e. AD82586/AD82581)
- Built-in 5V to 3.3V regulator for internal device operation
- Anti-pop design
- Over-temperature protection
- Under-voltage shutdown
- Short-circuit detection
- Single 12 MHz Crystal Input
- 3.3V operation I/O
- Supports Windows Me/2000/XP/Vista/7/8, Linux and MacOS
- Integration circuit quality meet Win7 and Win8 Hardware Logo requirement

Description

AD62556 is a highly integrated USB single chip for headphone. Many useful features are programmable with pins or I2C control. The device also has an I²S input port and I²S output port. The I²S input port allows other external audio sources to use the class D amplifier to share the headphone. The I²S output port allows other high performance audio device (i.e. AD82586/AD82581B).

Functional Block Diagram

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Aug. 2021

Revision: 1.1 1/34

Order Informaton

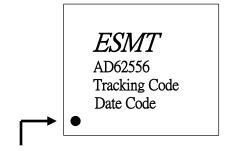
Product ID	Package	Packing / MPQ	Comments
AD62556-LG48NAY	E-LQFP-48L (7x7 mm)	2.5K Units / Small Box (250 Units / Tray, 10 Trays / Small Box	Green

Available Package

Package Type	Device No.	θ _{ja} (°C/W)	Ψ _{jt} (°C/W)	θ _{jt} (°C/W)	Exposed Thermal Pad
E-LQFP-48L	AD62556	27.4	1.33	6.0	Yes (Note1)

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is suggested.
- Note 1.2: θ_{ja} is simulated on a room temperature (T_A =25 $^{\circ}$ C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The simulation is tested using the JEDEC51-5 thermal measurement standard.
- Note 1.3: Ψ_{jt} represents the heat resistance for the heat flow between the chip and the package's top surface. It is extracted from the simulation data to obtain θ_{ja} .
- Note 1.3: θ_{jt} represents the heat resistance for the heat flow between the chip and the package's top surface. It is simulated a cold plate on the top of the package.

Marking Information

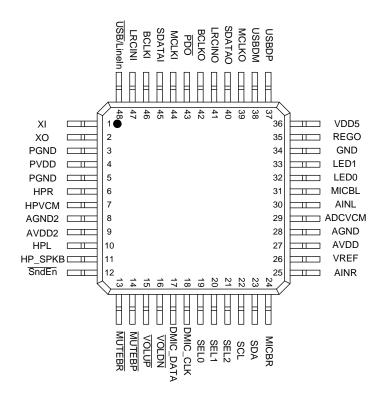

AD62556

Line 1: LOGO

Line 2: Product no.

Line 3: Tracking Code

Line 4 : Date Code



Publication Date: Aug. 2021

Revision: 1.1 2/34

Pin Assignment

Pin Description

Pin	Name	Туре	Description	Characteristics
1	XI	I	Crystal input	With internal 1Mohm resistor connected to the pin of XO
2	ХО	0	Crystal output	
3	PGND	Р	Ground	
4	PVDD	Р	Supply 5V	
5	PGND	Р	Ground	
6	HPR	0	Headphone right channel output	
7	HPVCM	0	Headphone common-mode voltage decoupling pin	
8	AGND2	Р	Headphone ground	
9	AVDD2	Р	Headphone 5V supply	
10	HPL	0	Headphone left channel output	
11	HP_SPKB	I	0:I2S output mode 1:headphoone mode	3.3V Schmitt trigger TTL input buffer
12	SndEn	I	Surround enable	With internal 100kohm pull-up resistor
13	MUTEBR	I	Recording Mute	With internal 100kohm pull-up resistor

Elite Semiconductor Microelectronics Technology Inc.

Publication Date: Aug. 2021 Revision: 1.1 3/34

14	MUTEBP	I	Power-down and mute of headphone	With internal 100kohm pull-up resistor
15	VOLUP	I	Volume up, low active	With internal 100kohm pull-up resistor
16	VOLDN	I	Volume down, low active	With internal 100kohm pull-up resistor
17	DMIC_DATA	I	Data input from digital microphone module	3.3V Schmitt trigger TTL input buffer
18	DMIC_CLK	0	Clock output to digital microphone module	
			SEL0 = 0: with external amplifier, AD82581	
19	SEL0	I	SEL0 = 1: with external amplifier,	
			AD82586/AD83586	
20	SEL1	,	SEL1 = 0: internal ADC input	
20	SELI	ı	SEL1 = 1: external ADC input	
			SEL1 = 0;	
			SEL2 = 1 : ADC as Microphone;	
21	SEL2	ı	SEL2 = 0: ADC as Line-in	
21	SELZ	ı	SEL1 = 1;	
			SEL2 = 1 : Digital microphone input ;	
			SEL2 = 0 : External ADC input	
22	SCL	I/O	l ² C's SCL, with a 4.7kohm pull high (this pin	
22	SCL	1/0	floating is prohibited)	
23	SDA	I/O	I ² C's SDA, with a 4.7kohm pull high (this pin	
23	SDA	1/0	floating is prohibited)	
24	MICBR	0	Microphone right channel voltage supply	
24	WIGHT	0	(3mA)	
25	AINR	I	Analog signal right channel	
26	VREF	0	Reference voltage	
27	AVDD	Р	ADC's 3.3V supply	
28	AGND	Р	ADC's Ground	
29	ADCVCM	0	ADC common mode voltage decoupling pin	
30	AINL	I	Analog signal left channel	
31	MICBL	0	Microphone Left channel voltage supply	
31	WIICEL		(3mA)	
32	LED0	0	LED indicator for playback	
33	LED1	0	LED indicator for recording	
34	GND	Р	Ground	
35	REGO	Р	3.3V regulator output	
36	VDD5	Р	5V supply voltage	
37	USBDP	I/O	USB data D+	With internal 1.5kohm pull-up resistor

Publication Date: Aug. 2021 Revision: 1.1 4/34

	T		l	
38	USBDM	I/O	USB data D-	
39	MCLKO	0	AD8XXX series Master clock(256xFs)	
40	SDATAO	0	AD8XXX series Serial audio output	
41	LRCINO	0	AD8XXX series L/R clock output	
42	BCLKO	0	AD8XXX series BCLK output	
43	PDO	0	Power-down output indicator pin USB/LineIn = 0; PDO = Low during USB device unconfiguration PDO = High during USB device configuration USB/LineIn = 1; PDO = Low during D+/D- at reset state (USBDP=0, USBDM=0) PDO = High during D+/D- at non-reset state	
44	MCLKI	I/O	ADC I2S Master clock (256xFs) input port	
45	SDATAI	I	Serial audio data input	3.3V Schmitt trigger TTL input buffer
46	BCLKI	I/O	ADC I2S BCLK input port	
47	LRCINI	I/O	ADC I2S L/R clock input port	
48	USB/LineIn	I	Output source select pin; USB/LineIn = 0: USB mode USB/LineIn = 1: Line-in mode	3.3V Schmitt trigger TTL input buffer

Publication Date: Aug. 2021 Revision: 1.1 5/34

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
VDD5	Supply for regulator input pin of VDD5	-0.3	6	V
PVDD	Supply for the pin of PVDD	-0.3	6	V
AVDD2	Supply for the pin of AVDD2	-0.3	6	V
AVDD	Supply for the pin of AVDD	-0.3	3.6	V
Vi	Input Pin Voltage	-0.3	3.6	V
T _{stg}	Storage Temperature	-65	150	°C
TJ	Junction Operating Temperature	0	150	°C

Recommended Operating Conditions

Symbol	Parameter	Тур	Units
VDD5	Supply for regulator input pin of VDD5	4.5~5.5	V
PVDD	Supply for the pin of PVDD	4.5~5.5	V
AVDD2	Supply for the pin of AVDD2	4.5~5.5	V
AVDD	Supply for the pin of AVDD	3.15~3.45	V
TJ	Junction Operating Temperature	0~125	°C
T _A	Ambient Operating Temperature	0~70	°C

Digital Characteristics

Symbol	Parameter	Min	Тур	Max	Units
V _{IH}	High-Level Input Voltage	2.0		3.45	V
V _{IL}	Low-Level Input Voltage			0.8	V
V _{OH}	High-Level Output Voltage	2.4		V_{REGO}	V
V _{OL}	Low-Level Output Voltage			0.4	V
Cı	Input Capacitance		6.4		pF

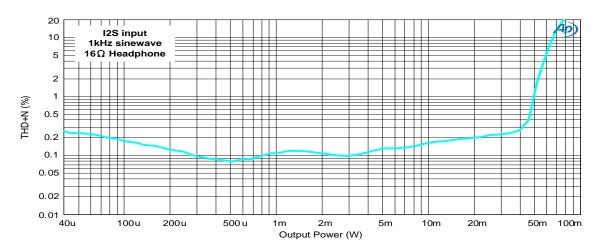
Publication Date: Aug. 2021 Revision: 1.1 6/34

General Electrical Characteristics

 \bullet Condition: $T_A \!\!=\!\! 25^{\circ}\! \mathbb{C}$ unless otherwise specified.

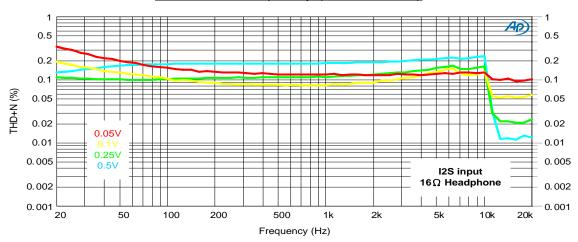
Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{PD}	Supply current during suspend mode			350		uA
	USB controller operation current	3.3V		75		mA
V_{REGO}	Regulator output voltage	4.5V≦VDD5	3.15	3.3	3.45	V
V REGO	Regulator current limit	≦5.5V			100	mA
т	Junction temperature for driver shutdown			150		°C
T _{SENSOR}	Temperature hysteresis for recovery			30		°C
UV _H	Under voltage disabled (for VDD5 and PVDD)			3.8		V
UV _L	Under voltage enabled (for VDD5 and PVDD)			3.7		V

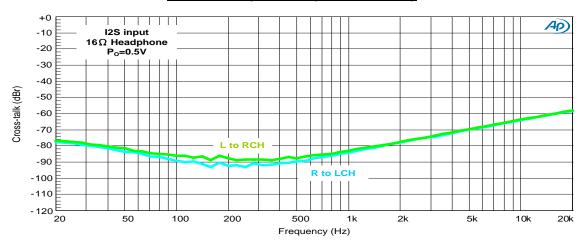
Publication Date: Aug. 2021 Revision: 1.1 **7/34**

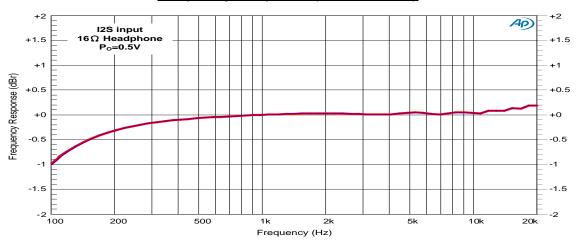

Electrical Characteristics and Specifications for Headphone

• Condition: $T_A=25^{\circ}C$; VDD5=PVDD=AVDD2=5V; AVDD=3.3V; $F_S=48$ kHz; I2S input; Load=16 Ω ; Input is 1kHz sinewave unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
В	RMS Output Power for Each Channel	THD+N=10%			66		mW
Po	Kivis Output Fower for Each Charmer	THD+N=1%			49		mW
THD+N	Total Harmonic Distortion + Noise	10mW			0.17		%
I HD+N	Total Harmonic Distortion + Noise	1mW			0.11		%
SNR	Signal to Noise Ratio (Note 1)		-1dB		89		dB
DR	Dynamic Range (Note 1)		-60dB		91		dB
	Channel Separation	@1kHz	P _O =0.5V		84		dB
	Noise level				46		uV


Note 1: Measured with A-weighting filter and external power.




THD+N vs. Frequency (Load: 16ohm)

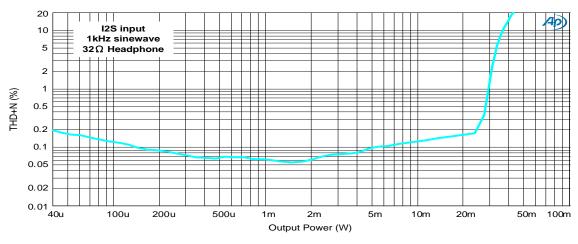
Channel Separation (Load: 16ohm)

Frequency Response (Load: 16ohm)

Publication Date: Aug. 2021

Revision: 1.1

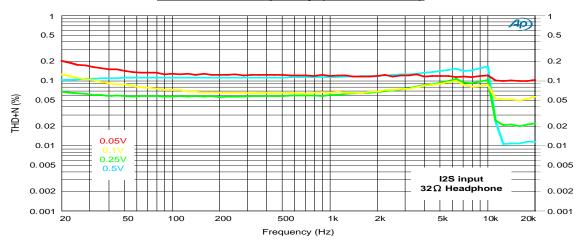
9/34

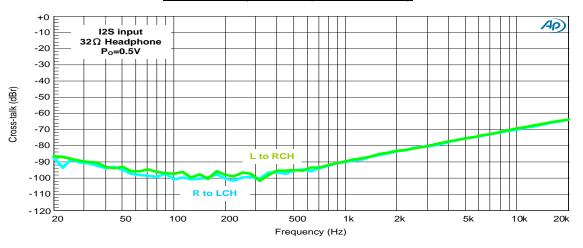

Electrical Characteristics and Specifications for Headphone

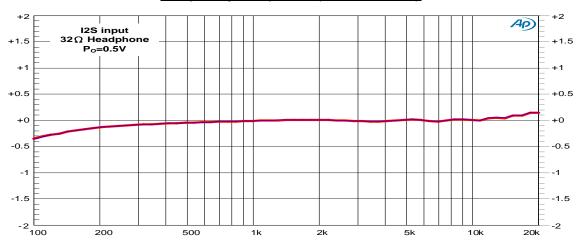
• Condition: $T_A=25^{\circ}C$; VDD5=PVDD=AVDD2=5V; AVDD=3.3V; $F_S=48$ kHz; I2S input; Load=32 Ω ; Input is 1kHz sinewave unless otherwise specified.

Symbol	Parameter	Condition	Input Level	Min	Тур	Max	Units
В	RMS Output Power for Each Channel	THD+N=10%			37		mW
Po	Kivis Output Fower for Each Charmer	THD+N=1%			29		mW
THD+N	Total Harmonic Distortion + Noise	10mW			0.13		%
I HD+N	Total Harmonic Distortion + Noise	1mW			0.06		%
SNR	Signal to Noise Ratio (Note 2)		-1dB		91		dB
DR	Dynamic Range (Note 2)		-60dB		91		dB
	Channel Separation	@1kHz	P _O =0.5V		89		dB
	Noise level				45		uV

Note 2: Measured with A-weighting filter and external power.

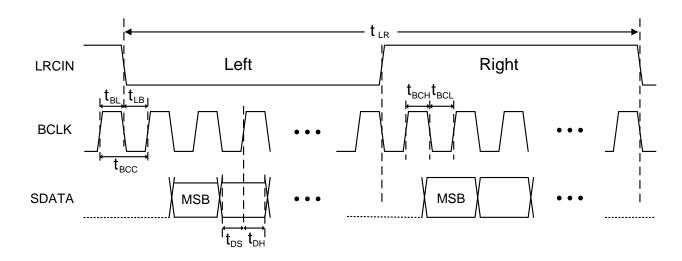



Publication Date: Aug. 2021 Revision: 1.1 10/34


THD+N vs. Frequency (Load: 32ohm)

Channel Separation (Load: 32ohm)

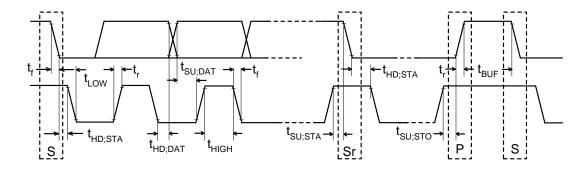
Frequency Response (Load: 32ohm)



Publication Date: Aug. 2021 Revision: 1.1 11/34

Interface Configuration

I²S



Symbol	Parameter	Min	Тур	Max	Units
t_{LR}	LRCIN Period (1/F _S)	10.41		125	μS
t _{BL}	BCLK Rising Edge to LRCIN Edge	50			ns
t _{LB}	LRCIN Edge to BCLK Rising Edge	50			ns
t _{BCC}	BCLK Period (1/64F _S)	162.76		1953	ns
t _{BCH}	BCLK Pulse Width High	81.38		976.5	ns
t _{BCL}	BCLK Pulse Width Low	81.38		976.5	ns
t _{DS}	SDATA Set-Up Time	50			ns
t _{DH}	SDATA Hold Time	50			ns

Publication Date: Aug. 2021 Revision: 1.1 12/34

• I²C Timing

Doromotor	Cymahal	Standard	Mode	Mode Fast Mod		Llait
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition	t _{HD,STA}	4.0		0.6		μS
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μS
HIGH period of the SCL clock	t _{HIGH}	4.0		0.6		μS
Setup time for a repeated START condition	t _{SU;STA}	4.7		0.6		μS
Data hold time for I ² C bus devices	t _{HD;DAT}	0	3.45	0	0.9	μS
Data setup time	t _{SU;DAT}	250		100		ns
Rise time of both SDA and SCL signals	t _r		1000	20+0.1Cb	300	ns
Fall time of both SDA and SCL signals	t _f		300	20+0.1Cb	300	ns
Setup time for STOP condition	t _{SU;STO}	4.0		0.6		μS
Bus free time between a STOP and START	t	4.7		1.3		0
condition	t _{BUF}	4.7		1.3		μS
Capacitive load for each bus line	C _b		400		400	pF
Noise margin at the LOW level for each	W	0.1		0.1V _{REGO}		V
connected device (including hysteresis)	V_{nL}	V_{REGO}		U. I V REGO		V
Noise margin at the HIGH level for each	V	0.2		0.21/		V
connected device (including hysteresis)	V_{nH}	V_{REGO}		0.2V _{REGO}		V

Publication Date: Aug. 2021 Revision: 1.1 13/34

I²C-Bus Transfer Protocol

Introduction

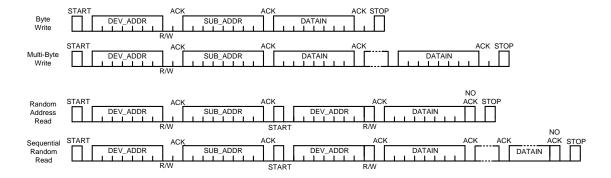
AD62556 employs I²C-bus transfer protocol. Two wires, serial data (SDA) and serial clock (SCL), carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock (SCL) on the bus. AD62556 is also a slave device in all of its communications.

Protocol

START and STOP condition

START is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A START condition must be preceding any command for data transfer. A low to high transition on the SDA line while SCL is high defines a STOP condition. A STOP condition terminates communication between AD62556 and the master device on the bus.

Data validity


The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low. AD62556 samples the SDA signal at rising edge of the clock signal SCL.

Device addressing

The master generates 7-bit address to recognize slave device. When AD62556 receives 7-bit address matched with 7'b0111010, AD62556 will acknowledge at 9th bit time (8th bit time is for R/W bit). The bytes following the device identification address are interpreted as internal sub-addresses.

Data transferring

Every byte put on SDA line must be 8-bits long. Each byte has to be followed by an acknowledge bit. Data is transferred with MSB first. As the figure shown below, in both write and read operation, AD62556 supports single-byte and multi-byte. Please refer to the figure shown below for detail data-transferring protocol.

Publication Date: Aug. 2021 Revision: 1.1 14/34

Operation Descriptions

The following figure illustrates two more advanced applications that use AD62556, together with an internal ADC or an external ADC, e.g., AD12250 from ESMT that can convert stereo line-in audio to I²S output to send to AD62556, and/or an external high-end class D amplifier such as AD82586x/AD82587x.

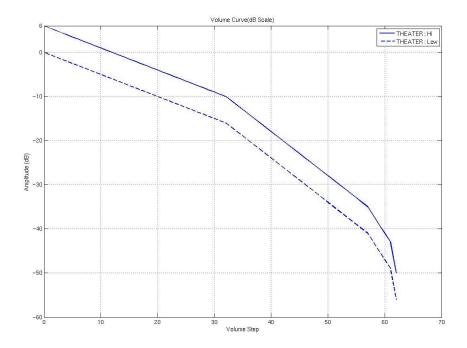
Both applications, a switch used to select audio stream from either USB port or Line-in port. When the audio stream is from Line-in port, the device is operating as "docking station" mode. When the audio stream is from USB port, the device is operating as "USB headphone" mode. When AD82586x/AD82587x is used, since it can deliver 10Wx2 + 20W (subwoofer) power or 20Wx2 power, USB bus power may be insufficient and local power supply is required. Functional description follows.

SEL2, SEL1, SEL0

	0	1
SEL0	AD8287x	AD82586x/AD83586

SEL2	SEL1	Audio Source	
0	0	Internal ADC as line-in	
1	0	Internal ADC as Microphone	
0	1	External ADC as line-in, such AD12250	
1	1	Digital Microphone input, such EMQ9050	

RESET


The AD62556 has embedded power on reset circuit. When AD62556 power on, need wait 0.5ms reset process for the system ready.

Volume Control of Playback

Audio volume control up/down is low active by VOLUPB/VOLDNB pins. VOLUPB and VOLDNB also support the USB HID device class for host panel control synchronization. Duration of low level must be longer than 3ms. The default volume gain is +6dB referred to the original input signal level.

Publication Date: Aug. 2021 Revision: 1.1 15/34

The volume gain range is from +6 dB to -50 dB.

Volume Control of Recording

The volume gain range is from +6 dB to -50 dB the same as the playback.

Mute control

Both MUTEB and MUTEBR are low active. Only MUTEB supports USB HID device class for host panel control synchronization. Duration of low level must be longer than 3ms.

Stereo dual ADC

AD62556 has a dual channel stereo ADC input as microphone or line-in recording source according to SEL1 and SEL2 pins. After USB plug in, the USB descriptor can be changed accordingly.

LED display

LED0 can be used as USB operation indicator when data transmit. LED1 can be used as recording mute indicator, it can be controlled by OS and MUTEBR.

Microphone Gain Boost

When use internal ADC as microphone in the AD62556, the internal gain boost has two stages. One is 20dB and the other can select from 0dB to 22.5dB.

Publication Date: Aug. 2021 Revision: 1.1 16/34

Self-protection circuit

AD62556 has built-in thermal, short-circuit and under-voltage detection circuits. If the internal thermal detection junction temperature is higher than 150°C, the output will be turned off. The thermal detection circuit has a temperature hysteretic characteristic such that the AD62556 will return to normal operation when the device is cooled down to about 30°C. Due to the process variation, the triggering temperature values can have around 10% variation.

To protect headphone power driver when the headphone output are shorted each other or shorted to VDD or GND, the output loading detection circuits are built-in and proper protection action will take place once the short circuit condition is detected.

Anti-pop design

AD62556 is has an anti-pop circuit to suppress the annoying pop sounds during initial power on, power down/up, mute, power off and volume level change.

Under Voltage protection circuit

Once the V_{DD5} is lower than 3.7V, AD62556 will turn off its headphone driver and the digital circuit will cease operation. When V_{DD5} becomes larger than 3.8V, AD62556 will return to normal operation.

Switching between USB mode and docking station mode

When the USB/LineIn pin is low, the input audio stream is from USB port as USB headphone mode. When this pin is high, the input audio stream is from AINL/AINR, I²S input port or DMIC_DATAL/DMIC_DATAR as docking station mode.

Audio Recording

AD62556 can record external audio source from AINL/AINR microphone/line in, I²S SDATAI or DMIC_DATAL/DMIC_DATAR digital microphone by SEL1 and SEL2 pins. Supports 44.1kHz and 48kHz sampling frequency for audio recording, the default setting is 48kHz for audio recording in AD62556.

3D Surround sound Mode

When SndEn pin is low, 3D surround sound Mode is enabled. AD62556 provides the virtual surround sound technology with greater separation and depth for stereo signals and synthesizes a 3D stereo sound field.

Power Consideration

AD62556 can be powered by the USB port directly. However, the maximum current supplied by each USB port is limited 500mA. If the total power requirement of the USB audio subsystem is higher than this, local power supply, e.g., a local AC adaptor will have to be used. If the audio subsystem is attached to an USB hub, which is not locally powered, the maximum power from each USB port is only limited to 100mA, and local power must be supplied.

Power Clipping

AD62556 support power clipping function for protect speaker. There are 16 levels can be set through I2C.

I²C master/slave mode

AD62556 can also operate as master or slave in a system when LRCINO is pulled low or high with $1M\Omega$ at power up initially (during 15ms after 90% of V_{REGO}). When LRCINO is pulled low, the AD62556 operates as I2C master mode. In I2C master mode, the AD62556 also can control the external class-D amp. AD82586/AD82581 via I2C. When LRCINO is pulled high, the AD62556 operates as I2C slave mode. When operating as a slave mode, AD62556's functions are controlled by micro-controller. Functions in PC are all disable.

I²S master/slave mode

The pins LRCINI, BCLKI and MCLKI of the AD62556 can also operate as I2S master or slave mode in a system when BCLKO is pulled low or high with $1M\Omega$ at power up initially (during 15ms after 90% of V_{REGO}). When BCLKO is pulled low, the AD62556 operates as I2S master mode. In I2S master mode, the pins LRCINI, BCLKI and MCLKI are output pins can drive the other devices. When BCLKO is pulled high, the AD62556 operates as I2S slave mode. When operating as a slave mode, the pins LRCINI, BCLKI and MCLKI are input pins need the other device provide clocks.

Note 1: In slave mode, it must be followed the frequency ratio of MCLKI = 256×LRCINI for correct operation.

Note 2: In slave mode, AD62556 only support I2S source playback and can't support USB source playback/recording.

Publication Date: Aug. 2021 Revision: 1.1 18/34

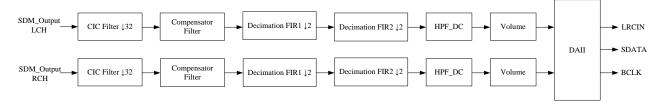
Mixing mode

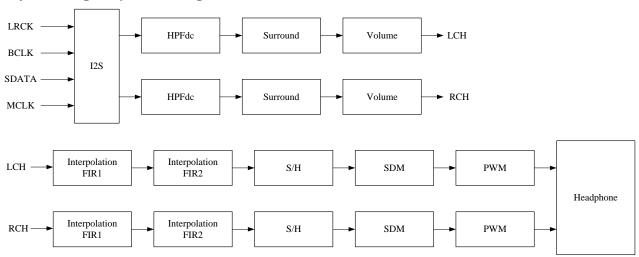
The AD62556 can mix USB audio signal and anlog/I2S audio signal to the output when MCLKO is pulled high with $1M\Omega$ at power up initially (during 15ms after 90% of V_{REGO}). When MCLKO is pulled high, the volume of mixing signal can control through address 8 and 9 via I2C. Also can mute and un-mute mixing signal through the bit 5 and 6 of the address 1.

Stereo/Mono mode

The output of the AD62556 can configure the stereo or mono mode when SDATAO is pulled high or low with $1M\Omega$ at power up initially (during 15ms after 90% of V_{REGO}). When SDATAO is pulled low, the output of the AD62556 is the stereo mode. When SDATAO is pulled high, the output of the AD62556 is the mono mode and the audio signal is mix from the left and right channel.

Switching between headphone mode and I2S output mode


When the HP_SPK pin is low, it is I2S output mode and the audio output is from SDATAO. When this pin is high, it turns to headphone mode and the output is only from pins HPL and HPR.


Register Table

The audio signal processing data flow is shown as the following figure. Users can control these functions by programming appropriate setting to register table, which is summarized in this section. More detail information will be described in next section.

Recording signal processing flow

Playback signal processing flow

Add.	Name	B[7]	B[6]	B[5]	B[4]	B[3]	B[2]	B[1]	B[0]
0X00	PB_CTL	Reserved	MIX_CH1_MUTE	MIX_CH2_MUTE	PB_ZDEN	PB_SRSEN	PB_HPF	PB_CH1_MUTE	PB_CH2_MUTE
0X01	PB_LVOL	Rese	erved	PB_CH1Vol [5]	PB_CH1Vol [4]	PB_CH1Vol [3]	PB_CH1Vol [2]	PB_CH1Vol [1]	PB_CH1Vol [0]
0X02	PB_RVOL	Rese	erved	PB_CH2Vol [5]	PB_CH2Vol [4]	PB_CH2Vol [3]	PB_CH2Vol [2]	PB_CH2Vol [1]	PB_CH2Vol [0]
0X03	RE_CTL	ADC_V3	ADC_V2	ADC_V1	ADC_V0	ADC_BOOST	RE_HPF	RE_CH1_Mute	RE_CH2_Mute
0X04	RE_LVOL	C1V[7]	C1V[6]	RE_CH1Vol [5]	RE_CH1Vol [4]	RE_CH1Vol [3]	RE_CH1Vol [2]	RE_CH1Vol [1]	RE_CH1Vol [0]
0X05	RE_RVOL	C2V[7]	C2V[6]	RE_CH2Vol [5]	RE_CH2Vol [4]	RE_CH2Vol [3]	RE_CH2Vol [2]	RE_CH2Vol [1]	RE_CH2Vol [0]
0X06	ZD&MICB	ZD_LEVEL[1]	ZD_LEVEL[0]	Reserved		MICBPDB	MBVSEL[1]	MBVSEL[0]	
0X07	PL		Reserved		PL_EN	PL_Level [3]	PL_Level [2]	PL_Level [1]	PL_Level [0]

Publication Date: Aug. 2021

Revision: 1.1 20/34

Detail Description for Register

In this section, please note that the highlighted columns are the default value of these tables. If no highlighted, it is because the default setting of this bit is determined by external pin.

Address 0: Playback State control

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	Reserved			
B[6]	MIX_CH1_MUTE	Mixing Channel1 Mute	1	Mute
D[0]	WIX_CITI_WOTE	wixing Charmer wide	0	Un-mute
DIEI	MIV CHO MUTE	Mining Changel Muta	1	Mute
B[5]	MIX_CH2_MUTE	Mixing Channel2 Mute	0	Un-mute
DIAI	DD ZDENI	Playback Zero-Detection Enable	1	Enable
B[4]	PB_ZDEN		0	Disable
DIOI	DD CDCEN	Playback Surround Enable	1	Enable
B[3]	PB_SRSEN		0	Disable
DIO	DD LIDE	Dlaybook High Doog Filter	1	Enable
B[2]	PB_HPF	Playback High Pass Filter	0	Disable
DIAI	DD CHA MUTE	Dischards Observed Mate	1	Mute
B[1]	PB_CH1_MUTE	Playback Channel1 Mute	0	Un-mute
DIOI	DD CHO MUTE	Playbook Channel Musta	1	Mute
B[0]	PB_CH2_MUTE	Playback Channel2 Mute	0	Un-mute

Publication Date: Aug. 2021 Revision: 1.1 21/34

Address 1: Playback Left Channel Volume Control

BIT	NAME	DESCRIPTION	Value	FUNCTION
			000000	+6dB
			000001	+5.5dB
		Dlovbook		
	B[5:0] PB_CH1Vol[5:0]	Playback	001100	+0dB
DIE-OI		Left Channel Volume Control	001101	-0.5dB
D[3.0]				
			100000	-10dB
			100001	-11dB
			111111	-∞dB

Address 2: Playback Right Channel Volume Control

BIT	NAME	DESCRIPTION	Value	FUNCTION
			000000	+6dB
			000001	+5.5dB
		Dlavkask		
	B[5:0] PB_CH2Vol[5:0]	Playback	001100	+0dB
DIE:01		Right Channel Volume Control	001101	-0.5dB
D[3.0]				
			100000	-10dB
			100001	-11dB
			111111	-∞dB

Publication Date: Aug. 2021 Revision: 1.1 22/34

Address 3: Recording State control

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			0000	0 dB
רבז	ADC_V3		0001	5 dB
B[7]	ADC_V3		0010	8 dB
			0011	10 dB
			0100	12 dB
B[6]	ADC_V2		0101	14 dB
ا ا	ADO_V2		0110	15 dB
		DESCRIPTION	0111	16.6 dB
	2 nd OP Gain control B[5] ADC_V1	2 nd OP Gain control	1000	17.6 dB
RI51			1001	18.6 dB
ال ال		ADC_V1	1010	19.2 dB
			1011	19.8 dB
			1100	20.4 dB
B[4]	ADC VO		1101	21 dB
D[4]	ADO_V0		1110	21.7 dB
			1111	22.5 dB
B[3]	ADC_BOOST	1 st OP Gain boost enable	1	Enable
ارق]	AD0_B0001	1 Of Gaill boost enable	0	Disable
B[2]	RE_HPF	Recording High Pass Filter	1	Enable
ارک _ا	IXE_FIFT	Recording Fight Pass Filter	0	Disable
B[1]	RE_CH1_Mute	Recording Channel Muta	1	Mute
וויןט	NE_OFFI_Widte	Recording Channel1 Mute	0	Un-mute
B[0]	RF CH2 Mute	Recording Channel2 Mute	1	Mute
P[O]	RE_CH2_Mute	1.000rding Orianneiz Mute	0	Un-mute

Publication Date: Aug. 2021 Revision: 1.1 23/34

Address 4: Recording Left Channel Volume Control

BIT	NAME	DESCRIPTION	Value	FUNCTION
			000000	+6dB
			000001	+5.5dB
		Decording		
		Recording	001100	+0dB
DIE:01		Left Channel Volume Control	001101	-0.5dB
B[5:0]	PB_CH1Vol[5:0]			
			100000	-10dB
			100001	-11dB
			111111	-∞dB

Address 5: Recording Right Channel Volume Control

BIT	NAME	DESCRIPTION	Value	FUNCTION
			000000	+6dB
			000001	+5.5dB
		Departing		
		Recording	001100	+0dB
DIE:01	DD CH3\/al[E:0]	Right 001101 H2Vol[5:0] Channel Volume 100000 100001	001101	-0.5dB
B[5:0]	PB_CH2V0[5:0]			
			-10dB	
			100001	-11dB
			111111	-∞dB

Publication Date: Aug. 2021 Revision: 1.1 24/34

Address 6: Zero-Detection and Mic. Bias Setting

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
			11	-60dB
DIZ.Cl	7D EVE	Zara Datastian Laval	10	-70dB
B[7:6]	ZD_LEVEL	Zero Detection Level	01	-80dB
			00	zero
B[5]	Reserved			
B[4]	Reserved			
B[3]	Reserved			
D[O]	MICBPDB	Microphone Bias Voltage	0	Power down
B[2]	MICEPDE	PowerDown	1	Power up
			11	0.9*AVDD
B[1:0]	MBVSEL	Microphone Bias Voltage	10	0.8*AVDD
B[1:0]	IVIDVOEL	Control	01	0.6*AVDD
			00	0.5*AVDD

Publication Date: Aug. 2021 Revision: 1.1 25/34

Address 7: Power Clipping Setting

BIT	NAME	DESCRIPTION	VALUE	FUNCTION
B[7]	Reserved			
B[6]	Reserved			
B[5]	Reserved			
DIAI	DC EN	Dower Clipping Engblo	1	Enable
B[4]	PC_EN	Power Clipping Enable	0	Disable
B[3]	Diol		0000	0dB
D[0]			0001	-2dB
וכום			0010	-4 dB
B[2]	PC_Level		0011	-6dB
D[1]	FO_Level	Power Clipping Level	0100	-8 dB
D[1]	B[1]			
BIOI			1110	-28 dB
B[0]			1111	-30 dB

Publication Date: Aug. 2021 Revision: 1.1 26/34

Address 8: Mixing Left Channel Volume Control

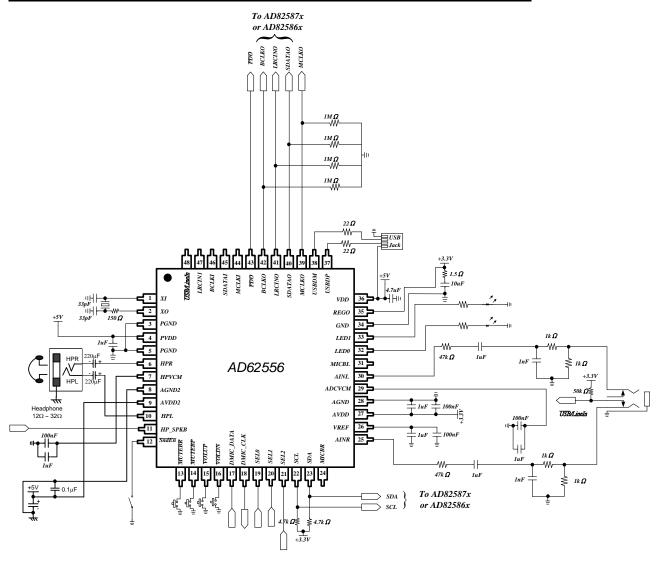
BIT	NAME	DESCRIPTION	Value	FUNCTION
B[5:0]	Mix_CH1Vol[5:0]	Mixing	000000	+6dB
		Left	000001	+5.5dB
		Channel		
		Volume	001100	+0dB
		Control	001101	-0.5dB
			100000	-10dB
			100001	-11dB
			111111	-∞dB

Address 9: Mixing Right Channel Volume Control

BIT	NAME	DESCRIPTION	Value	FUNCTION
B[5:0]	Mix_CH2Vol[5:0]	Mixing	000000	+6dB
		Right	000001	+5.5dB
		Channel		
		Volume	001100	+0dB
		Control	001101	-0.5dB
			100000	-10dB
			100001	-11dB
			111111	-∞dB

Publication Date: Aug. 2021

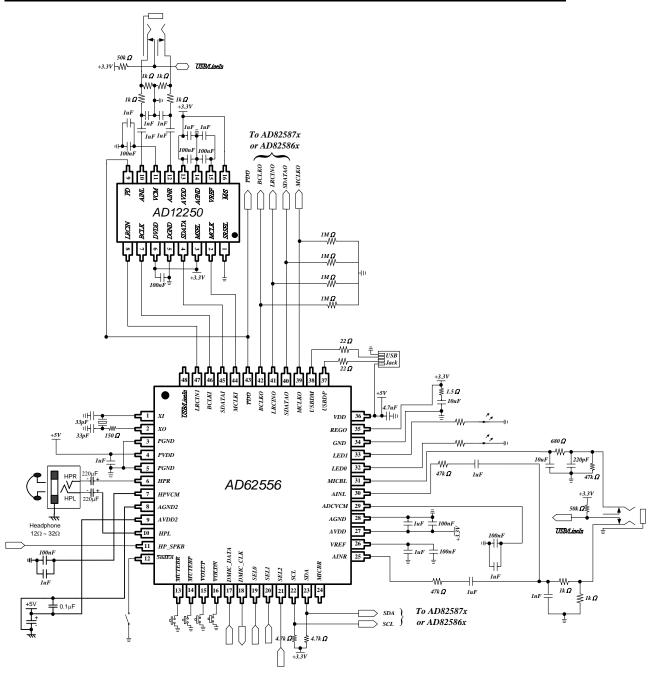
Revision: 1.1



Application Circuit Examples for Headphone, External ADC as Line-in 50k Ω +3.3V USB/LineIn 1kΩ 1kΩ ₩•₩ To AD82587x or AD82586x AD12250 +3.3V 22 Ω ₩-₹ 1.5Ω SDATAI LRCINO BCLKIMCLKI BCLKOUSBDM SDATAO USBDP DDOVDD хo REGO PGND GNDPVDD LED1 PGND LED0 HPR MICBL AD62556 HPVCM AINLADCVCM AGND AVDD2 Headphone AVDD 12Ω ~ 32Ω VREF **4**11 HP_SPKB AINR 12 SELI To AD82587x SDA) . 4² 4² or AD82586x

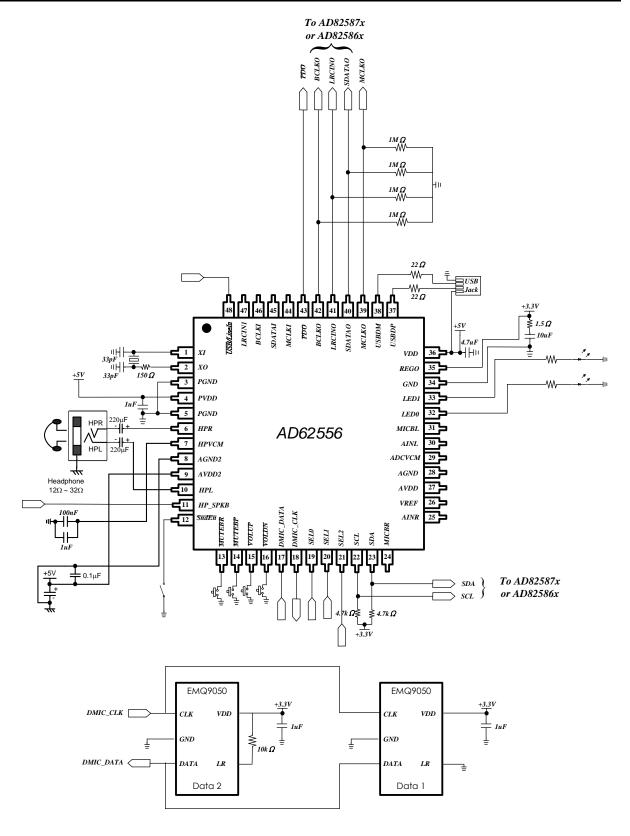
Publication Date: Aug. 2021 Revision: 1.1 **28/34**

Application Circuit Examples for Headphone, Internal ADC as Line-in


Publication Date: Aug. 2021

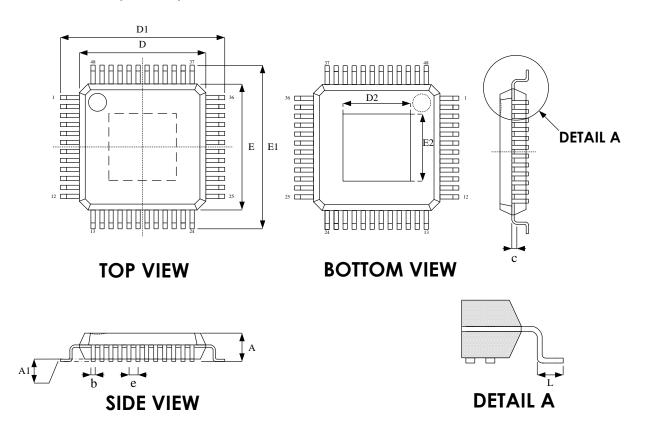
Revision: 1.1

29/34


Application Circuit Examples for Headphone, Internal ADC as Microphone

Publication Date: Aug. 2021 Revision: 1.1 **30/34**

Application Circuit Examples for Headphone with Digital Microphone Module input



Publication Date: Aug. 2021 Revision: 1.1 31/34

Package Dimensions

• E-LQFP 48L (7x7mm)

Crussle of	Dimension in mm		
Symbol	Min	Max	
А		1.60	
A1	0.05	0.15	
Ъ	0.17	0.27	
С	0.09	0.20	
D	6.90	7.10	
D1	8.90	9.10	
Е	6.90	7.10	
E1	8.90	9.10	
е	0.50 BSC		
L	0.45	0.75	

Exposed pad			
	Dimension in mm		
	Min	Max	
D2	4.31	5.21	
E2	4.31	5.21	

Publication Date: Aug. 2021

Revision: 1.1 32/34

Revision History

Revision	Date	Description	
0.1	2013.07.11	Original version.	
0.2	2013.10.24	1) Corrected the pin of AVDD2 is 5V power pin, not 3.3V power pin. 2) Removed 5V tolerant I/O. 3) Put 3.3V regulator V _{REGO} spec. into this datasheet. 4) Changed 3.3V regulator lout spec from 200mA to 100mA. 5) Removed EMP logo. 6) Updated I2C and I2S master/slave mode description, that's set during power on initial.	
0.3	2014.08.04	 Add feature note about I2S Master/Slave mode. Modify Pin Description Table(SDA, SCL) 	
1.0	2015.02.17	Remove preliminary word and modify version to 1.0	
1.1	2021.09.02	 Update Volume Control of Playback. Update Mute Control. Update LED Display. 	

Publication Date: Aug. 2021

Revision: 1.1 33/34

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: Aug. 2021 Revision: 1.1 34/34