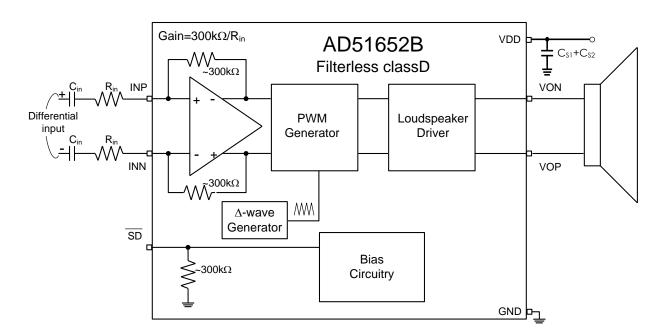


3W Mono Filter-less Class-D Audio Amplifier

Features

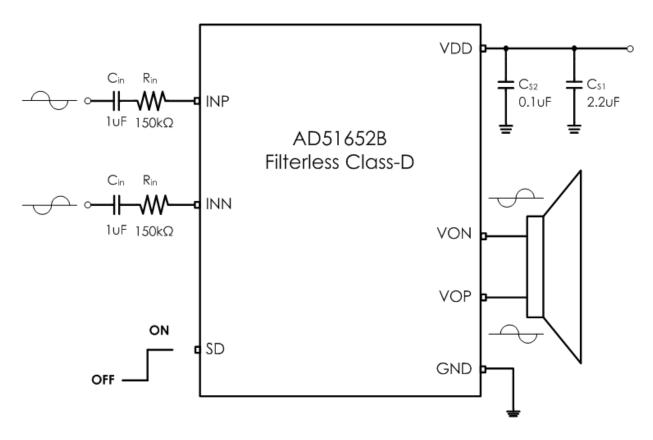
- Supply voltage range: 2.5 V to 5.5 V
- Support single-ended or differential analog input
- Low Quiescent Current
- Low Output Noise
- Low shut-down current
- Short power-on transient time
- Internal pull-low resistor on shut-down pins
- Short-circuit protection
- Over-temperature protection
- Loudspeaker power within 10% THD+N
 - 1.8W/ch into 8Ω loudspeaker
 - >3W/ch into 4Ω loudspeaker
- Loudspeaker efficiency
 - 93% @ 8Ω, THD+N=10%
 - 90% @ 4Ω, THD+N=10%
- WLCSP-9L package
- Integrated Feedback Resistor of 300kΩ

Applications

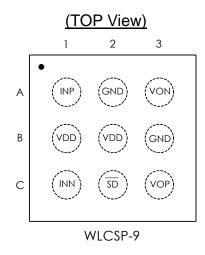

- Monitor audio
- PDA
- Portable multimedia devices
- Notebook computer
- Mobile phone

Description

The AD51652B is a 3W mono, filter-less Class-D audio amplifier. Operating with 5.0V loudspeaker driver supply, it can deliver 3W output power into 4 Ω loudspeaker within 10% THD+N.


The AD51652B is a mono audio amplifier with high efficiency and suitable for the notebook computer, and portable multimedia device.

Functional Block Diagram


Typical Application Circuit

Note. Gain=2 V/V

Pin Assignments

Order information

AD51652B-WL09NRR

WL09 WLCSP-9 Package

NRR RoHS & Halogen free

Rating: -40 to 85°C

Package in Tape & Reel

Pin Description

NAME	PIN	10	DESCRIPTION	
INAIVIE	WLCSP-9	TYPE	DESCRIPTION	
INP	A1	I	Positive differential input.	
GND	A2, B3	G	Power ground.	
VON	А3	0	Negative output.	
VDD	B1,B2	Р	Power supply.	
INN	C1	I	Negative differential input.	
SD	C2	I	Shutdown AD51652B (Low active logic).	
VOP	C3	0	Positive output.	

Ordering Information

Product ID	Package	Packing / MPQ	Comments
AD51652B-WL09NRR	WLCSP-9	3K units Tape & Reel	Green

Marking Information

AD51652B

• WLCSP-9 Package Marking Information

Line 1 : Product No Line 2 : Version

Line 3 : Tracking Code

Available Package

Package Type	Device No.	θ _{JA} (°C/W)	θ _{JT} (℃/W)	Ψ _{JT} (℃W)
WLCSP-9	AD51652B	128	0.9	3.8

- Note 1.1: The thermal pad is located at the bottom of the package. To optimize thermal performance, soldering the thermal pad to the PCB's ground plane is necessary.
- Note 1.2: θ _{JA} is simulated on a room temperature (T_A =25 $^{\circ}$ C), natural convection environment test board, which is constructed with a thermally efficient, 4-layers PCB (2S2P). The measurement is simulated using the JEDEC51-5 thermal measurement standard.
- Note 1.3: θ_{JT} represents the thermal resistance for the heat flow between the chip junction and the package's top surface. It's extracted from the simulation data with obtaining a cold plate on the package top.
- Note 1.4: Ψ_{JT} represents the thermal parameter for the heat flow between the chip junction and the package's top surface center. It's extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-5.

Absolute Maximum Ratings

SYMBOL	PARAMETER		MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver	-0.3	6.0	V
V _I	Input pins voltage		5.5	V
T _{stg}	Storage temperature	-65	150	°C
TJ	Junction operating temperature	-40	150	°C
R_L	Minimum load resistance	3.2		Ω
ESD	Human Body Model	-	±2K	V
230	Charged Device Model	-	±1K	V

Recommended Operating Conditions

SYMBOL	PARAMETER		MAX	UNIT
VDD	Supply for analog cells & loudspeaker driver		5.5	V
V _{IH}	High-Level Input Voltage		-	V
V _{IL}	Low-Level Input Voltage	-	0.35	V
T _J	Junction operating temperature	-40	125	$^{\circ}\!\mathbb{C}$
T _A	Ambient operating temperature	-40	85	$^{\circ}\!\mathbb{C}$

Publication Date: May. 2023 Revision: 0.2 4/16

General Electrical Characteristics (T_A=25℃)

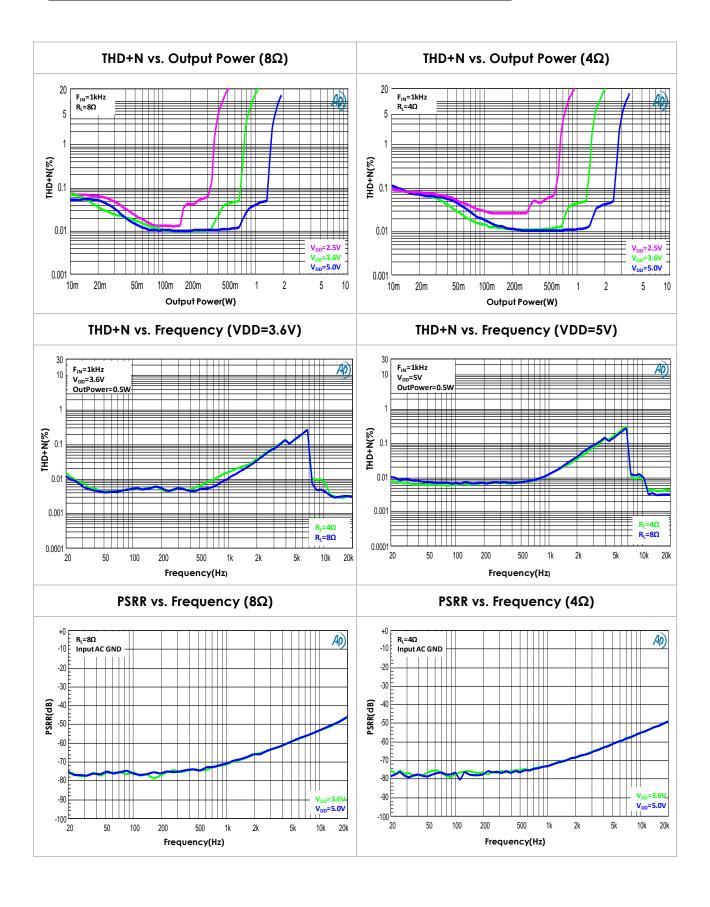
SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT	
Iq	Operating current	VDD=SD=5V,		2.3		mA	
14	Operating current	Output switching		2.3		ША	
I _{PD}	Supply current during	VDD=5.5V;		-1		uA	
IPD	power-down mode	SD#=0		<1		uA	
V _{offset}	Output offset voltage	Input ac grounded,		. 1	0	mV	
v offset	Output onset voltage	VDD=2.5V ~ 5.5V		< 1	2		
Tsd	Junction temperature for			155		°C	
130	driver shutdown			155)	
Thys	Temperature hysteresis for			25		°C	
Tilyo	recovery from shutdown			25		Ŭ	
f _{sw}	Switching rate of		250	300	350	kHz	
- 5w	loudspeakers driver		250	300	330		
A_V	Gain		$285k\Omega$	$300k\Omega$	$315k\Omega$	V/V	
v			R_{in}	R_{in}	R_{in}	-, -	
Ton	Turn-on time	VDD = 3.6 V		1.7	4	msec	

Electrical Characteristics and Specifications for Loudspeaker

• Gain= 2 V/V, Load=8 Ω , f_{in}=1 kHz, C_{S1}=2.2uF, C_{S2}=0.1uF, T_A=25 $^{\circ}$ C (unless otherwise noted)

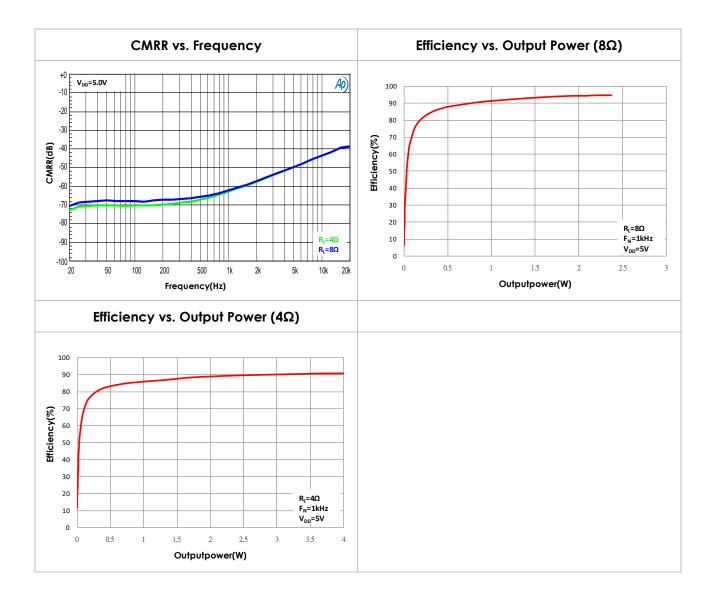
SYMBOL	PARAMETER	C	ONDITION	MIN	TYP	MAX	UNIT
		VDD=5.0V	THD+N = 10 %		1.80		W
		VDD=3.0V	THD+N = 1 %		1.50		W
В	DMS Output Dower	VDD=3.6V	THD+N = 10 %		0.93		W
Po	RMS Output Power	VDD=3.6V	THD+N = 1 %		0.75		W
		VDD=2.5V	THD+N = 10 %		0.44		W
		VDD=2.5V	THD+N = 1 %		0.36		W
	Total Harmonic Distortion	VDD=5.0V, Po=1.0W			0.04		%
THD+N	plus Noise	VDD=3.6V, Po=0.5W			0.045		%
	pius Noise	VDD=2.5V, Po=0.2W			0.04		%
SNR	Signal to Noise Ratio	VDD=5.0V, Po=1.0W			97		dB
	Power Supply Rejection	VDD=3.6V, V _{ripple} =200mVpp					
PSRR	Ratio	Inputs ac grounded with Ci=2μF		76	76		dB
	Italio	f=217 Hz					
CMRR	Common-Mode Rejection	VDD=3.6V, V _{IC} =1Vpp, f=217Hz			68		dB
Vn	Output integrated noise	VDD=3.6V f _{in} =20Hz ~ 20kHz			31		uV
V n	(A-weighted)				31		uv
η	Efficiency	VDD=5V, TH	D+N=10%		93		%

Publication Date: May. 2023 Revision: 0.2 5/16



• Gain= 2 V/V, Load=4 Ω , f_{in}=1 kHz, C_{S1}=2.2uF, C_{S2}=0.1uF, T_A=25 $^{\circ}$ C (unless otherwise noted)

SYMBOL	PARAMETER	CON	NDITION	MIN	TYP	MAX	UNIT
		\/DD_5 0\/	THD+N = 10 %		3.2		W
		VDD=5.0V	THD+N = 1 %		2.65		W
В	PMS Output Dower	VDD=3.6V	THD+N = 10 %		1.65		W
Po	RMS Output Power	VDD=3.6V	THD+N = 1 %		1.35		W
		VDD=2.5V	THD+N = 10 %		0.7		W
		VDD=2.5V	THD+N = 1 %		0.6		W
	Total Harmania Diatortian	VDD=5.0V, Po=2.0W			0.04		%
THD+N		VDD=3.6V, Po=1.0W			0.045		%
	plus Noise	VDD=2.5V, Po=0.5W			0.06		%
SNR	Signal to Noise Ratio	VDD=5.0V, Po=1.8W			97		dB
	Power Supply Paiaction	VDD=3.6V, V _{ripple} =200mVpp					
PSRR	Power Supply Rejection Ratio	Inputs ac grounded with Ci=2μF		76		dB	
	Ratio		f=217 Hz				
CMRR	Common-Mode Rejection	VDD=3.6V, V _{IC} =1Vpp, f=217Hz			68		dB
V	Output integrated noise	VDD=3.6V			31		uV
V _n	(A-weighted)	f _{in} =20Hz ~ 20kHz			31		uv
η	Efficiency	VDD=5.0V, TH	D+N=10%		90		%



Typical Characteristics (Gain= 2 V/V, unless otherwise noted)

Typical Characteristics (Gain= 2 V/V, unless otherwise noted)

Operation Descriptions

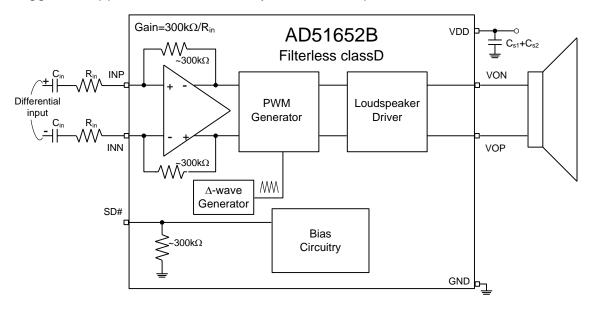
- Self-protection circuits (typical values are used below.)
 AD51652B has built-in over-temperature, overload and under-voltage detectors.
 - (i) If the internal junction temperature is higher than 155°C, the outputs of loudspeaker drivers will be disabled and connected to ground and the temperature hysteresis for AD51652B to return to normal operation is about 25°C. The variation of protected temperature is around 10%.
 - (ii) To protect loudspeaker drivers from current damage when the wires connected to loudspeakers are shorted to one another, shorted to VDD or shorted to GND, circuits for the detection of output loading are built in the AD51652B. For normal operation, loudspeaker resistance is larger than 3.2Ω is required. Otherwise, overload detectors may activate. When a short-circuit event occurs, the AD51652B goes to shutdown mode and activates the integrated auto-recovery process whose aim is to return the device to normal operation once the short-circuit is removed.
 - (iii) When the VDD voltage is lower than 2.3V, AD51652B will disable and loudspeaker drivers are at low state, cease AD51652B beside voltage detector circuit. When VDD becomes larger than 2.4V, AD51652B will return to normal operation.
- Anti-pop design

AD51652B is with anti-pop design. Annoying pop sounds during initial power on and power down/up are suppressed. When one of the operations mentioned above is applied, AD51652B will internally generate appropriate control signals to suppress pop sounds.

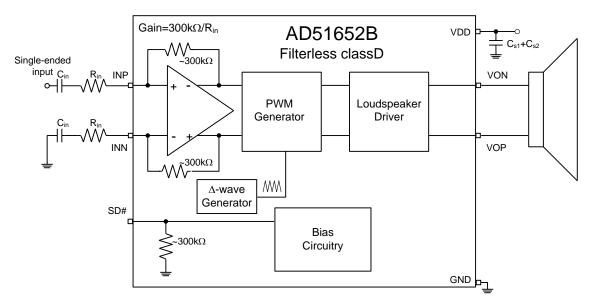
Application Circuit Information

• Input resistors (R_{in}) and input capacitors (C_{in})
The total gain of the audio amplifier (AD51652B) is set by input resistor (R_{in}) according to the following equation (a). The performance at low frequency (bass) is affected by the corner frequency (f_c) of the high-pass filter composed of input resistors (R_{in}) and input capacitors (C_{in}), determined in equation (b).

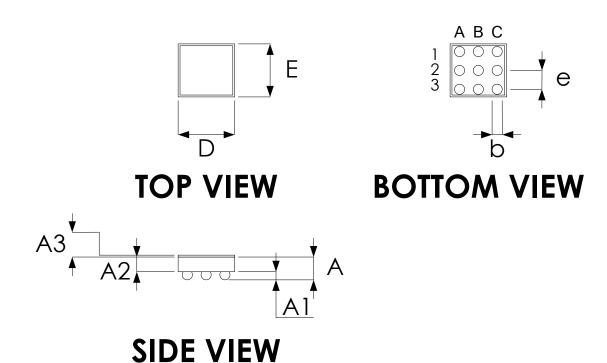
$$Gain = \frac{300k\Omega}{R_{in}} \left(V_{V} \right) \cdots (a)$$


$$f_c = \frac{1}{2\pi R_{in}C_{in}} (Hz) \cdots (b)$$

For differential audio signal application, the input capacitors (C_{in}), for DC decoupling, are not required. When single-ended audio source is used, the input capacitors (C_{in}) are required.


Publication Date: May. 2023 Revision: 0.2 9/16

Suggested application circuit for fully differential input


• Suggested application circuit for single-ended input

Package Outline Dimensions

• WLCSP-9

Cumbal	Dimension in mn			
Symbol	Min	Max		
А	0.536	0.634		
A1	0.189	0.231		
A2	0.325	0.375		
A3	0.022	0.028		
D	1.190	1.230		
Е	1.190	1.230		
Ъ	0.234	0.286		
е	0.4	00		

Revision History

Revision	Date	Description
0.1	2023.03.21	Preliminary version.
0.2	2023.05.12	Update general electrical characteristics. Page 5~6.

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

Publication Date: May. 2023 Revision: 0.2 13/16